Matching Items (2,114)
Filtering by

Clear all filters

152222-Thumbnail Image.png
Description
An embedded HVDC system is a dc link with at least two ends being physically connected within a single synchronous ac network. The thesis reviews previous works on embedded HVDC, proposes a dynamic embedded HVDC model by PSCAD program, and compares the transient stability performance among AC, DC and embedded

An embedded HVDC system is a dc link with at least two ends being physically connected within a single synchronous ac network. The thesis reviews previous works on embedded HVDC, proposes a dynamic embedded HVDC model by PSCAD program, and compares the transient stability performance among AC, DC and embedded HVDC. The test results indicate that by installing the embedded HVDC, AC network transient stability performance has been largely improved. Therefore the thesis designs a novel frequency control topology for embedded HVDC. According to the dynamic performance test results, when the embedded HVDC system equipped with a frequency control, the system transient stability will be improved further.
ContributorsYu, Jicheng (Author) / Karady, George G. (Thesis advisor) / Hui, Yu (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2013
152256-Thumbnail Image.png
Description
Due to great challenges from aggressive environmental regulations, increased demand due to new technologies and the integration of renewable energy sources, the energy industry may radically change the way the power system is operated and designed. With the motivation of studying and planning the future power system under these new

Due to great challenges from aggressive environmental regulations, increased demand due to new technologies and the integration of renewable energy sources, the energy industry may radically change the way the power system is operated and designed. With the motivation of studying and planning the future power system under these new challenges, the development of the new tools is required. A network equivalent that can be used in such planning tools needs to be generated based on an accurate power flow model and an equivalencing procedure that preserves the key characteristics of the original system. Considering the pervasive use of the dc power flow models, their accuracy is of great concern. The industry seems to be sanguine about the performance of dc power flow models, but recent research has shown that the performance of different formulations is highly variable. In this thesis, several dc power-flow models are analyzed theoretically and evaluated numerically in IEEE 118-bus system and Eastern Interconnection 62,000-bus system. As shown in the numerical example, the alpha-matching dc power flow model performs best in matching the original ac power flow solution. Also, the possibility of applying these dc models in the various applications has been explored and demonstrated. Furthermore, a novel hot-start optimal dc power-flow model based on ac power transfer distribution factors (PTDFs) is proposed, implemented and tested. This optimal-reactance-only dc model not only matches the original ac PF solution well, but also preserves the congestion pattern obtain from the OPF results of the original ac model. Three improved strategies were proposed for applying the bus-aggregation technique to the large-scale systems, like EI and ERCOT, to improve the execution time, and memory requirements when building a reduced equivalent model. Speed improvements of up to a factor of 200 were observed.
ContributorsQi, Yingying (Author) / Tylavsky, Daniel J (Thesis advisor) / Hedman, Kory W (Committee member) / Sankar, Lalitha (Committee member) / Arizona State University (Publisher)
Created2013
174861-Thumbnail Image.jpg
Created1925-19-39 (uncertain)
174864-Thumbnail Image.jpg
Created1922
174868-Thumbnail Image.jpg
Created1934
174871-Thumbnail Image.jpg
Created1922
174875-Thumbnail Image.jpg
Created1921
174879-Thumbnail Image.jpg
Created1921
174883-Thumbnail Image.jpg
Created1921
174887-Thumbnail Image.jpg
Created1921