Matching Items (2)
151840-Thumbnail Image.png
Description
Urbanization and infrastructure development often brings dramatic changes in the surface and groundwater regimes. These changes in moisture content may be particularly problematic when subsurface soils are moisture sensitive such as expansive soils. Residential foundations such as slab-on ground may be built on unsaturated expansive soils and therefore have to

Urbanization and infrastructure development often brings dramatic changes in the surface and groundwater regimes. These changes in moisture content may be particularly problematic when subsurface soils are moisture sensitive such as expansive soils. Residential foundations such as slab-on ground may be built on unsaturated expansive soils and therefore have to resist the deformations associated with change in moisture content (matric suction) in the soil. The problem is more pronounced in arid and semi arid regions with drying periods followed by wet season resulting in large changes in soil suction. Moisture content change causes volume change in expansive soil which causes serious damage to the structures. In order to mitigate these ill effects various mitigation are adopted. The most commonly adopted method in the US is the removal and replacement of upper soils in the profile. The remove and replace method, although heavily used, is not well understood with regard to its impact on the depth of soil wetting or near-surface differential soil movements. In this study the effectiveness of the remove and replace method is studied. A parametric study is done with various removal and replacement materials used and analyzed to obtain the optimal replacement depths and best material. The depth of wetting and heave caused in expansive soil profile under climatic conditions and common irrigation scenarios are studied for arid regions. Soil suction changes and associated soil deformations are analyzed using finite element codes for unsaturated flow and stress/deformation, SVFlux and SVSolid, respectively. The effectiveness and fundamental mechanisms at play in mitigation of expansive soils for remove and replace methods are studied, and include (1) its role in reducing the depth and degree of wetting, and (2) its effect in reducing the overall heave potential, and (3) the effectiveness of this method in pushing the seat of movement deeper within the soil profile to reduce differential soil surface movements. Various non-expansive replacement layers and different surface flux boundary conditions are analyzed, and the concept of optimal depth and soil is introduced. General observations are made concerning the efficacy of remove and replace as a mitigation method.
ContributorsBharadwaj, Anushree (Author) / Houston, Sandra L. (Thesis advisor) / Welfert, Bruno (Thesis advisor) / Zapata, Claudia E (Committee member) / Arizona State University (Publisher)
Created2013
154060-Thumbnail Image.png
Description
This research is aimed at studying the impact of building design parameters in terms of their importance and mutual interaction, and how these aspects vary across climates and HVAC system types. A methodology is proposed for such a study, by examining the feasibility and use of two different statistical methods

This research is aimed at studying the impact of building design parameters in terms of their importance and mutual interaction, and how these aspects vary across climates and HVAC system types. A methodology is proposed for such a study, by examining the feasibility and use of two different statistical methods to derive all realistic ‘near-optimum’ solutions which might be lost using a simple optimization technique.

DOE prototype medium office building compliant with ASHRAE 90.1-2010 was selected for the analysis and four different HVAC systems in three US climates were simulated.

The interaction between building design parameters related to envelope characteristics and geometry (total of seven variables) has been studied using two different statistical methods, namely the ‘Morris method’ and ‘Predictive Learning via Rule Ensembles’.

Subsequently, a simple graphical tool based on sensitivity analysis has been developed and demonstrated to present the results from parametric simulations. This tool would be useful to better inform design decisions since it allows imposition of constraints on various parameters and visualize their interaction with other parameters.

It was observed that the Radiant system performed best in all three climates, followed by displacement ventilation system. However, it should be noted that this study did not deal with performance optimization of HVAC systems while there have been several studies which concluded that a VAV system with better controls can perform better than some of the newer HVAC technologies. In terms of building design parameters, it was observed that ‘Ceiling Height’, ‘Window-Wall Ratio’ and ‘Window Properties’ showed highest importance as well as interaction as compared to other parameters considered in this study, for all HVAC systems and climates.

Based on the results of this study, it is suggested to extend such analysis using statistical methods such as the ‘Morris method’, which require much fewer simulations to categorize parameters based on their importance and interaction strength. Usage of statistical methods like ‘Rule Ensembles’ or other simple visual tools to analyze simulation results for all combinations of parameters that show interaction would allow designers to make informed and superior design decisions while benefiting from large reduction in computational time.
ContributorsDidwania, Srijan Kumar (Author) / Reddy, T. Agami (Thesis advisor) / Addison, Marlin S. (Thesis advisor) / Bryan, Harvey J. (Committee member) / Arizona State University (Publisher)
Created2015