Matching Items (3)
151434-Thumbnail Image.png
Description
Understanding the properties and formation histories of individual stars in galaxies remains one of the most important areas in astrophysics. The impact of the Hubble Space Telescope<\italic> (HST<\italic>) has been revolutionary, providing deep observations of nearby galaxies at high resolution and unprecedented sensitivity over a wavelength range from near-ultraviolet to

Understanding the properties and formation histories of individual stars in galaxies remains one of the most important areas in astrophysics. The impact of the Hubble Space Telescope<\italic> (HST<\italic>) has been revolutionary, providing deep observations of nearby galaxies at high resolution and unprecedented sensitivity over a wavelength range from near-ultraviolet to near-infrared. In this study, I use deep HST<\italic> imaging observations of three nearby star-forming galaxies (M83, NGC 4214, and CGCG 269-049) based on the HST<\italic> observations, in order to provide to construct color-magnitude and color-color diagrams of their resolved stellar populations. First, I select 50 regions in the spiral arm and inter-arm areas of M83, and determine the age distribution of the luminous stellar populations in each region. I developed an innovative method of star-by-star correction for internal extinction to improve stellar age and mass estimates. I compare the extinction-corrected ages of the 50 regions with those determined from several independent methods. The young stars are much more likely to be found in concentrated aggregates along spiral arms, while older stars are more dispersed. These results are consistent with a scenario where star formation is associated with the spiral arms, and stars form primarily in star clusters before dispersing on short timescales to form the field population. I address the effects of spatial resolution on the measured colors, magnitudes, and age estimates. While individual stars can occasionally show measurable differences in the colors and magnitudes, the age estimates for entire regions are only slightly affected. The same procedure is applied to nearby starbursting dwarf NGC 4214 to study the distributions of young and old stellar populations. Lastly, I describe the analysis of the HST<\italic> and Spitzer Space Telescope<\italic> observations of the extremely metal-poor dwarf galaxy (XMPG) CGCG 269-049 at a distance of 4.96 Mpc. This galaxy is one of the most metal-poor known with 12+log(O/H)=7.43. I find clear evidence for the presence of an old stellar population in CGCG~269-049, ruling out the possibility that this galaxy is forming its first generation of stars, as originally proposed for XMPGs. This comprehensive study of resolved stellar populations in three nearby galaxies provides detailed view of the current state of star formation and evolution of galaxies.
ContributorsKim, Hwihyun (Author) / Windhorst, Rogier A (Thesis advisor) / Jansen, Rolf A (Committee member) / Rhoads, James E (Committee member) / Scannapieco, Evan (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2012
156741-Thumbnail Image.png
Description
Green pea galaxies are a class of rare, compact starburst galaxies that have powerful optical emission line [OIII]$\lambda$5007. They are the best low-redshift analogs of high-redshift (z$>$2) Lyman-alpha emitting galaxies (LAEs). They provide unique opportunities to study physical conditions in high-redshift LAEs in great detail. In this dissertation, a few

Green pea galaxies are a class of rare, compact starburst galaxies that have powerful optical emission line [OIII]$\lambda$5007. They are the best low-redshift analogs of high-redshift (z$>$2) Lyman-alpha emitting galaxies (LAEs). They provide unique opportunities to study physical conditions in high-redshift LAEs in great detail. In this dissertation, a few physical properties of green peas are investigated. The first study in the dissertation presents star formation rate (SFR) surface density, thermal pressure in HII regions, and a correlation between them for 17 green peas and 19 Lyman break analogs, which are nearby analogs of high-redshift Lyman break galaxies. This correlation is consistent with that found from the star-forming galaxies at z $\sim$ 2.5. In the second study, a new large sample of 835 green peas in the redshift range z = 0.011 -- 0.411 are assembled from Data Release 13 of the Sloan Digital Sky Survey (SDSS) with the equivalent width of the line [OIII]$\lambda$5007 $>$ 300\AA\ or the equivalent width of the line H$\beta$ $>$ 100\AA. The size of this new sample is ten times that of the original 80 star-forming green pea sample. With reliable T$_e$-based gas-phase metallicity measurements for the 835 green peas, a new empirical calibration of R23 (defined as ([OIII]$\lambda$$\lambda$4959,5007 + [OII]$\lambda$$\lambda$3726,3729)/H$\beta$) for strong line emitters is then derived. The double-value degeneracy of the metallicity is broken for galaxies with large ionization parameter (which manifests as log([OIII]$\lambda$$\lambda$4959,5007/[OII]$\lambda$$\lambda$3726,3729) $\geq$ 0.6). This calibration offers a good way to estimate metallicities for extreme emission-line galaxies and high-redshift LAEs. The third study presents stellar mass measurements and the stellar mass-metallicity relation of 828 green peas from the second study. The stellar mass covers 6 orders of magnitude in the range 10$^{5}$ -- 10$^{11}$ M$_{\odot}$, with a median value of 10$^{8.8}$ M$_{\odot}$. The stellar mass-metallicity relation of green peas is flatter and displays about 0.2 - 0.5 dex offset to lower metallicities in the range of stellar mass higher than 10$^{8}$ M$_{\odot}$ compared to the local SDSS star-forming galaxies. A significant dependence of the stellar mass-metallicity relation on star formation rate is not found in this work.
ContributorsJiang, Tianxing (Author) / Malhotra, Sangeeta (Thesis advisor) / Rhoads, James E (Committee member) / Scannapieco, Evan (Committee member) / Borthakur, Sanchayeeta (Committee member) / Jansen, Rolf A (Committee member) / Arizona State University (Publisher)
Created2018
156627-Thumbnail Image.png
Description
The formation of the firsts stars some 100-300 Myr after the Big Bang marked the end of the cosmic darks ages and created the elemental building blocks of not only rocky planets but eventually us. Understanding their formation, lifetimes, and contributions to the evolution of our universe is one of

The formation of the firsts stars some 100-300 Myr after the Big Bang marked the end of the cosmic darks ages and created the elemental building blocks of not only rocky planets but eventually us. Understanding their formation, lifetimes, and contributions to the evolution of our universe is one of the current frontiers in astronomy and astrophysics.

In this work I present an improved model for following the formation of Pop III stars, their effects on early galaxy evolution, and how we might search for them. I make use of a new subgrid model of turbulent mixing to accurately follow the time scales required to mix supernova (SN) ejecta -- enriched with heavy elements -- into the pristine gas. I implement this model within a large-scale cosmological simulation and follow the fraction of gas with metallicity below a critical value marking the boundary between Pop III and metal enriched Population II (Pop II) star formation. I demonstrate that accounting for subgrid mixing results in a Pop III stars formation rate that is 2-3 times higher than standard models with the same physical resolution.

I also implement and track a new "Primordial metals" (PM) scalar that tracks the metals generated by Pop III SNe. These metals are taken up by second generation stars and likely result in a subclass of carbon-enhanced, metal-poor (CEMP) stars. By tracking both regular metals and PM, I can model, in post-processing, the elemental abundances of simulation stars. I find good agreement between observations of CEMP-no Milky Way halo stars and second generation stars within the simulation when assuming the first stars had a typical mass of 60 M☉, providing clues as to the Pop III initial mass function.
ContributorsSarmento, Richard John (Author) / Scannapieco, Evan (Thesis advisor) / Windhorst, Rogier (Committee member) / Young, Patrick (Committee member) / Timmes, Frank (Committee member) / Patience, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018