Matching Items (5)
Filtering by

Clear all filters

156655-Thumbnail Image.png
Description
The objective of this dissertation is to study the use of metamaterials as narrow-band and broadband selective absorbers for opto-thermal and solar thermal energy conversion. Narrow-band selective absorbers have applications such as plasmonic sensing and cancer treatment, while one of the main applications of selective metamaterials with broadband absorption is

The objective of this dissertation is to study the use of metamaterials as narrow-band and broadband selective absorbers for opto-thermal and solar thermal energy conversion. Narrow-band selective absorbers have applications such as plasmonic sensing and cancer treatment, while one of the main applications of selective metamaterials with broadband absorption is efficiently converting solar energy into heat as solar absorbers.

This dissertation first discusses the use of gold nanowires as narrow-band selective metamaterial absorbers. An investigation into plasmonic localized heating indicated that film-coupled gold nanoparticles exhibit tunable selective absorption based on the size of the nanoparticles. By using anodized aluminum oxide templates, aluminum nanodisc narrow-band absorbers were fabricated. A metrology instrument to measure the reflectance and transmittance of micro-scale samples was also developed and used to measure the reflectance of the aluminum nanodisc absorbers (220 µm diameter area). Tuning of the resonance wavelengths of these absorbers can be achieved through changing their geometry. Broadband absorption can be achieved by using a combination of geometries for these metamaterials which would facilitate their use as solar absorbers.

Recently, solar energy harvesting has become a topic of considerable research investigation due to it being an environmentally conscious alternative to fossil fuels. The next section discusses the steady-state temperature measurement of a lab-scale multilayer solar absorber, named metafilm. A lab-scale experimental setup is developed to characterize the solar thermal performance of selective solar absorbers. Under a concentration factor of 20.3 suns, a steady-state temperature of ~500 degrees Celsius was achieved for the metafilm compared to 375 degrees Celsius for a commercial black absorber under the same conditions. Thermal durability testing showed that the metafilm could withstand up to 700 degrees Celsius in vacuum conditions and up to 400 degrees Celsius in atmospheric conditions with little degradation of its optical and radiative properties. Moreover, cost analysis of the metafilm found it to cost significantly less ($2.22 per square meter) than commercial solar coatings ($5.41-100 per square meter).

Finally, this dissertation concludes with recommendations for further studies like using these selective metamaterials and metafilms as absorbers and emitters and using the aluminum nanodiscs on glass as selective filters for photovoltaic cells to enhance solar thermophotovoltaic energy conversion.
ContributorsAlshehri, Hassan (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Rykaczewski, Konrad (Committee member) / Wang, Robert (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2018
154531-Thumbnail Image.png
Description
The energy crisis in the past decades has greatly boosted the search for alternatives to traditional fossil foils, and solar energy stands out as an important candidate due to its cleanness and abundance. However, the relatively low conversion efficiency and energy density strongly hinder the utilization of solar energy in

The energy crisis in the past decades has greatly boosted the search for alternatives to traditional fossil foils, and solar energy stands out as an important candidate due to its cleanness and abundance. However, the relatively low conversion efficiency and energy density strongly hinder the utilization of solar energy in wider applications. This thesis focuses on employing metamaterials and metafilms to enhance the conversion efficiency of solar thermal, solar thermophotovoltaic (STPV) and photovoltaic systems.

A selective metamaterial solar absorber is designed in this thesis to maximize the absorbed solar energy and minimize heat dissipation through thermal radiation. The theoretically designed metamaterial solar absorber exhibits absorptance higher than 95% in the solar spectrum but shows emittance less than 4% in the IR regime. This metamaterial solar absorber is further experimentally fabricated and optically characterized. Moreover, a metafilm selective absorber with stability up to 600oC is introduced, which exhibits solar absorptance higher than 90% and IR emittance less than 10%.

Solar thermophotovoltaic energy conversion enhanced by metamaterial absorbers and emitters is theoretically investigated in this thesis. The STPV system employing selective metamaterial absorber and emitter is investigated in this work, showing its conversion efficiency between 8% and 10% with concentration factor varying between 20 and 200. This conversion efficiency is remarkably enhanced compared with the conversion efficiency for STPV system employing black surfaces (<2.5%).

Moreover, plasmonic light trapping in ultra-thin solar cells employing concave grating nanostructures is discussed in this thesis. The plasmonic light trapping inside an ultrathin GaAs layer in the film-coupled metamaterial structure is numerically demonstrated. By exciting plasmonic resonances inside this structure, the short-circuit current density for the film-coupled metamaterial solar cell is three times the short-circuit current for a free-standing GaAs layer.

The dissertation is concluded by discussing about the future work on selective solar thermal absorbers, STPV/TPV systems and light trapping structures. Possibilities to design and fabricate solar thermal absorber with better thermal stability will be discussed, the experimental work of TPV system will be conducted, and the light trapping in organic and perovskite solar cells will be looked into.
ContributorsWang, Hao (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Dai, Lenore (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2016
157959-Thumbnail Image.png
Description
It is well known that radiative heat transfer rate can exceed that between two blackbodies by several orders of magnitude due to the coupling of evanescent waves. One promising application of near-field thermal radiation is thermophotovoltaic (TPV) devices, which convert thermal energy to electricity. Recently, different types of metamaterials with

It is well known that radiative heat transfer rate can exceed that between two blackbodies by several orders of magnitude due to the coupling of evanescent waves. One promising application of near-field thermal radiation is thermophotovoltaic (TPV) devices, which convert thermal energy to electricity. Recently, different types of metamaterials with excitations of surface plasmon polaritons (SPPs)/surface phonon polaritons (SPhPs), magnetic polaritons (MP), and hyperbolic modes (HM), have been studied to further improve near-field radiative heat flux and conversion efficiency. On the other hand, near-field experimental demonstration between planar surfaces has been limited due to the extreme challenge in the vacuum gap control as well as the parallelism.

The main objective of this work is to experimentally study the near-field radiative transfer and the excitation of resonance modes by designing nanostructured thin films separated by nanometer vacuum gaps. In particular, the near-field radiative heat transfer between two parallel plates of intrinsic silicon wafers coated with a thin film of aluminum nanostructure is investigated. In addition, theoretical studies about the effects of different physical mechanisms such as SPhP/SPP, MPs, and HM on near-field radiative transfer in various nanostructured metamaterials are conducted particularly for near-field TPV applications. Numerical simulations are performed by using multilayer transfer matrix method, rigorous coupled wave analysis, and finite difference time domain techniques incorporated with fluctuational electrodynamics. The understanding gained here will undoubtedly benefit the spectral control of near-field thermal radiation for energy-harvesting applications like thermophotovoltaic energy conversion and radiation-based thermal management.
ContributorsSabbaghi, Payam (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Robert (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2019
158378-Thumbnail Image.png
Description
This thesis explores the potential application of the phase change material tungsten trioxide (WO3) in optical force modulation for spacecraft and satellites. It starts with a literature review of past space optical force applications as well as potential phase change materials for optical force modulation. This is followed by the

This thesis explores the potential application of the phase change material tungsten trioxide (WO3) in optical force modulation for spacecraft and satellites. It starts with a literature review of past space optical force applications as well as potential phase change materials for optical force modulation. This is followed by the theoretical model and discussions of the optical properties of a variety of materials used in the structures explored thereafter. Four planar structures were analyzed in detail. Two of the structures were opaque and the other two were semi-transparent.

The first of the opaque structures was a tungsten trioxide film on aluminum substrate (WO3/Al). It was found to have a 26% relative change in radiation pressure with WO3 thickness of 200 nm. The second opaque structure was a tungsten trioxide film on silicon spacer on aluminum substrate (WO3/Si/Al). This structure was found to have a 25% relative change in radiation pressure with 180 nm WO3 and 20 nm Si.

The semitransparent structures were tungsten trioxide film on undoped silicone substrate (WO3/Si), and a tungsten trioxide film on a silicone spacer on tungsten trioxide (WO3/Si/WO3). The WO3/Si structure was found to have an 8% relative change in radiation pressure with 200 nm WO3 and 50 nm Si. The WO3/Si/WO3 structure had a relative change in radiation pressure of 20% with 85 nm WO3 and 90 nm Si.

These structures show promise for attitude control in future solar sailing space missions. The IKAROS mission proved the functionality of using phase change material in order to steer a space craft. This was accomplished with a 7.8% relative change in radiation pressure. However, this only occurred at a pressure change of 0.11 µN/m2 over a range of 0.4 to 1.0 µm which is approximately 77.1% of the solar spectrum energy. The proposed structure (WO3/Al) with a 26% relative change in radiation pressure with a pressure change of 1.4 µN/m2 over a range 0.4 to 1.6 µm which is approximately 80% of the solar spectrum energy. The magnitude of radiation pressure variation in this study exceeds that used on the IKAROS, showing applicability for future mission.
ContributorsVlastos, Joseph Niko (Author) / Wang, Liping (Thesis advisor) / Wang, Robert (Committee member) / Calhoun, Ron (Committee member) / Arizona State University (Publisher)
Created2020
158870-Thumbnail Image.png
Description
This research focuses mainly on employing tunable materials to achieve dynamic radiative properties for spacecraft and building thermal management. A secondary objective is to investigate tunable materials for optical propulsion applications. The primary material investigated is vanadium dioxide (VO2), which is a thermochromic material with an insulator-to-metal phase transition. VO2

This research focuses mainly on employing tunable materials to achieve dynamic radiative properties for spacecraft and building thermal management. A secondary objective is to investigate tunable materials for optical propulsion applications. The primary material investigated is vanadium dioxide (VO2), which is a thermochromic material with an insulator-to-metal phase transition. VO2 typically undergoes a dramatic shift in optical properties at T = 341 K, which can be reduced through a variety of techniques to a temperature more suitable for thermal control applications. A VO2-based Fabry-Perot variable emitter is designed, fabricated, characterized, and experimentally demonstrated. The designed emitter has high emissivity when the radiating surface temperature is above 345 K and low emissivity when the temperature is less than 341 K. A uniaxial transfer matrix method and Bruggeman effective medium theory are both introduced to model the anisotropic properties of the VO2 to facilitate the design of multilayer VO2-based devices. A new furnace oxidation process is developed for fabricating high quality VO2 and the resulting thin films undergo comprehensive material and optical characterizations. The corresponding measurement platform is developed to measure the temperature-dependent transmittance and reflectance of the fabricated Fabry-Perot samples. The variable heat rejection of the fabricated samples is demonstrated via bell jar and cryothermal vacuum calorimetry measurements. Thermal modeling of a spacecraft equipped with variable emittance radiators is also conducted to elucidate the requirements and the impact for thermochromic variable emittance technology.
The potential of VO2 to be used as an optical force modulating device is also investigated for spacecraft micropropulsion. The preliminary design considers a Fabry-Perot cavity with an anti-reflection coating which switches between an absorptive “off” state (for insulating VO2) and a reflective “on” state (for metallic VO2), thereby modulating the incident solar radiation pressure. The visible and near-infrared optical properties of the fabricated vanadium dioxide are examined to determine if there is a sufficient optical property shift in those regimes for a tunable device.
ContributorsTaylor, Sydney June (Author) / Wang, Liping (Thesis advisor) / Wells, Valana (Committee member) / Yu, Hongbin (Committee member) / Wang, Robert (Committee member) / Thangavelautham, Jekanthan (Committee member) / Massina, Christopher J (Committee member) / Arizona State University (Publisher)
Created2020