Matching Items (2)
Filtering by

Clear all filters

151172-Thumbnail Image.png
Description
For the past 30 years wildlife biologists have debated the need of pronghorn antelope (Antilocapra americana) to drink freestanding water (free water). Some have suggested that pronghorn may feed at night to increase preformed water (plant moisture) intake, thus decreasing their dependence on free water. Pronghorn diet composition and nutrient

For the past 30 years wildlife biologists have debated the need of pronghorn antelope (Antilocapra americana) to drink freestanding water (free water). Some have suggested that pronghorn may feed at night to increase preformed water (plant moisture) intake, thus decreasing their dependence on free water. Pronghorn diet composition and nutrient intake is integral to understanding water available to pronghorn through preformed and metabolic sources. The dual purpose of this study was to determine plant composition of pronghorn diets, and to examine whether night feeding provides a water allocation advantage by testing for differences between day and night and modeling free water requirements during biologically critical seasons and years of different precipitation. I determined species composition, selected nutrients, and moisture content of American pronghorn diets on Perry Mesa, Arizona in March, May, June and August of 2008 and 2009. I used microhistological analysis of fecal samples to determine percent plant composition of pronghorn diets. I used forage samples to evaluate the nutrient composition of those diets for moisture, crude protein and structural carbohydrates, and to calculate metabolic water. I used calculations proposed by Fox et al. (2000) to model free water requirements and modified the equations to reflect increased requirements for lactation. Diet analysis revealed that pronghorn used between 67% and 99% forbs and suggested fair range conditions. Preformed water was not significantly different between night and day. Night feeding appeared to be of marginal advantage, providing an average potential 9% preformed water increase in 2008, and 3% in 2009. The model indicated that neither male nor female pronghorn could meet their water requirements from preformed and metabolic water during any time period, season or year. The average free water requirements for females ranged from 0.67 L/animal/day (SE 0.06) in March, 2008 to 3.12 L/animal/day (SE 0.02) in June, 2009. The model showed that American pronghorn on Perry Mesa require access to free water during biological stress periods.
ContributorsTluczek, Melanie (Author) / Miller, William H. (Thesis advisor) / Brown, David E. (Committee member) / Steele, Kelly (Committee member) / Arizona State University (Publisher)
Created2012
153267-Thumbnail Image.png
Description
In riparian ecosystems, reptiles and amphibians are good indicators of environmental conditions. Herpetofauna have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. My objective was to relate herpetofauna abundance to changes in riparian habitat along the Virgin River caused by the Tamarix biological control agent,

In riparian ecosystems, reptiles and amphibians are good indicators of environmental conditions. Herpetofauna have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. My objective was to relate herpetofauna abundance to changes in riparian habitat along the Virgin River caused by the Tamarix biological control agent, Diorhabda carinulata, and riparian restoration.

During 2013 and 2014, vegetation and herpetofauna were monitored at 21 riparian locations along the Virgin River via trapping and visual encounter surveys. Study sites were divided into four stand types based on density and percent cover of dominant trees (Tamarix, Prosopis, Populus, and Salix) and presence of restoration activities: Tam, Tam-Pros, Tam-Pop/Sal, and Restored Tam-Pop/Sal. Restoration activities consisted of mechanical removal of non-native trees, transplanting native trees, and introduction of water flow. All sites were affected by biological control. I predicted that herpetofauna abundance would vary between stand types and that herpetofauna abundance would be greatest in Restored Tam-Pop/Sal sites due to increased habitat openness and variation following restoration efforts.

Results from trapping indicated that Restored Tam-Pop/Sal sites had three times more total lizard and eight times more Sceloporus uniformis captures than other stand types. Anaxyrus woodhousii abundance was greatest in Tam-Pop/Sal and Restored Tam-Pop/Sal sites. Visual encounter surveys indicated that herpetofauna abundance was greatest in the Restored Tam-Pop/Sal site compared to the adjacent Unrestored Tam-Pop/Sal site. Habitat variables were reduced to six components using a principle component analysis and significant differences were detected among stand types. Restored Tam-Pop/Sal sites were most similar to Tam-Pop/Sal sites. S. uniformis were positively associated with large woody debris and high densities of Populus, Salix, and large diameter Prosopis.

Restored Tam-Pop/Sal sites likely supported higher abundances of herpetofauna, as these areas exhibited greater habitat heterogeneity. Restoration activities created a mosaic habitat by reducing canopy cover and increasing native tree density and surface water. Natural resource managers should consider implementing additional restoration efforts following biological control when attempting to restore riparian areas dominated by Tamarix and other non-native trees.
ContributorsMosher, Kent (Author) / Bateman, Heather L (Thesis advisor) / Stromberg, Juliet C. (Committee member) / Miller, William H. (Committee member) / Arizona State University (Publisher)
Created2014