Matching Items (2)
151099-Thumbnail Image.png
Description
Spinal cord injury (SCI) disrupts the communication between supraspinal circuits and spinal circuits distal to the injury. This disruption causes changes in the motor abilities of the affected individual, but it can also be used as an opportunity to study motor control in the absence or limited presence of control

Spinal cord injury (SCI) disrupts the communication between supraspinal circuits and spinal circuits distal to the injury. This disruption causes changes in the motor abilities of the affected individual, but it can also be used as an opportunity to study motor control in the absence or limited presence of control from the brain. In the case of incomplete paraplegia, locomotion is impaired and often results in increased incidence of foot drag and decreased postural stability after injury. The overall goal of this work is to understand how changes in kinematics of movement and neural control of muscles effect locomotor coordination following SCI. Toward this end, we examined musculoskeletal parameters and kinematics of gait in rats with and without incomplete SCI (iSCI) and used an empirically developed computational model to test related hypotheses. The first study tested the hypothesis that iSCI causes a decrease in locomotor and joint angle movement complexity. A rat model was used to measure musculoskeletal properties and gait kinematics following mild iSCI. The data indicated joint-specific changes in kinematics in the absence of measurable muscle atrophy, particularly at the ankle as a result of the injury. Kinematic changes manifested as a decrease in complexity of ankle motion as indicated by measures of permutation entropy. In the second study, a new 2-dimensional computational model of the rat ankle combining forward and inverse dynamics was developed using the previously collected data. This model was used to test the hypothesis that altered coordination of flexor and extensor muscles (specifically alteration in burst shape and timing) acting at the ankle joint could be responsible for increases in incidence of foot drag following injury. Simulation results suggest a time course for changes in neural control following injury that begins with foot drag and decreased delay between antagonistic muscle activations. Following this, beneficial adaptations in muscle activation profile and ankle kinematics counteract the decreased delay to allow foot swing. In both studies, small changes in neural control caused large changes in behavior, particularly at the ankle. Future work will further examine the role of neural control of hindlimb in rat locomotion following iSCI.
ContributorsHillen, Brian (Author) / Jung, Ranu (Thesis advisor) / Abbas, James (Committee member) / Muthuswamy, Jit (Committee member) / Jindrich, Devin (Committee member) / Yamaguchi, Gary (Committee member) / Arizona State University (Publisher)
Created2012
154515-Thumbnail Image.png
Description
Navigation through natural environments requires continuous sensory guidance. In addition to coordinated muscle contractions of the limbs that are controlled by spinal cord, equilibrium, body weight bearing and transfer, and avoidance of obstacles all have to happen while locomotion is in progress and these are controlled by the supraspinal centers.

For

Navigation through natural environments requires continuous sensory guidance. In addition to coordinated muscle contractions of the limbs that are controlled by spinal cord, equilibrium, body weight bearing and transfer, and avoidance of obstacles all have to happen while locomotion is in progress and these are controlled by the supraspinal centers.

For successful locomotion, animals require visual and somatosensory information. Even though a number of supraspinal centers receive both in varying degrees, processing this information at different levels of the central nervous system, especially their contribution to visuo-motor and sensory-motor integration during locomotion is poorly understood.

This dissertation investigates the patterns of neuronal activity in three areas of the forebrain in the cat performing different locomotor tasks to elucidate involvement of these areas in processing of visual and somatosensory information related to locomotion. In three studies, animals performed two contrasting locomotor tasks in each and the neuronal activities were analyzed.

In the first study, cats walked in either complete darkness or in an illuminated room while the neuronal activity of the motor cortex was recorded. This study revealed that the neuronal discharge patterns in the motor cortex were significantly different between the two illumination conditions. The mean discharge rates, modulation, and other variables were significantly different in 49% of the neurons. This suggests a contextual correlation between the motor cortical activity and being able to see.

In two other studies, the activities of neurons of either the somatosensory cortex (SI) or ventrolateral thalamus (VL) were recorded while cats walked on a flat surface (simple locomotion) or along a horizontal ladder where continuous visual and somatosensory feedback was required (complex locomotion).

We found that the activity of all but one SI cells with receptive fields on the sole peaked before the foot touched the ground: predictably. Other cells showed various patterns of modulation, which differed between simple and complex locomotion. We discuss the predictive and reflective functionality of the SI in cyclical sensory-motor events such as locomotion.

We found that neuronal discharges in the VL were modulated to the stride cycle resembling patterns observed in the cortex that receives direct inputs from the VL. The modulation was stronger during walking on the ladder revealing VL’s contribution to locomotion-related activity of the cortex during precision stepping.
ContributorsNilaweera, Wijitha Udayalal (Author) / Beloozerova, Irina N (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Dounskaia, Natalia (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2016