Matching Items (3)
Description
Every year, more than 11 million maritime containers and 11 million commercial trucks arrive to the United States, carrying all types of imported goods. As it would be costly to inspect every container, only a fraction of them are inspected before being allowed to proceed into the United States. This

Every year, more than 11 million maritime containers and 11 million commercial trucks arrive to the United States, carrying all types of imported goods. As it would be costly to inspect every container, only a fraction of them are inspected before being allowed to proceed into the United States. This dissertation proposes a decision support system that aims to allocate the scarce inspection resources at a land POE (L-POE), to minimize the different costs associated with the inspection process, including those associated with delaying the entry of legitimate imports. Given the ubiquity of sensors in all aspects of the supply chain, it is necessary to have automated decision systems that incorporate the information provided by these sensors and other possible channels into the inspection planning process. The inspection planning system proposed in this dissertation decomposes the inspection effort allocation process into two phases: Primary and detailed inspection planning. The former helps decide what to inspect, and the latter how to conduct the inspections. A multi-objective optimization (MOO) model is developed for primary inspection planning. This model tries to balance the costs of conducting inspections, direct and expected, and the waiting time of the trucks. The resulting model is exploited in two different ways: One is to construct a complete or a partial efficient frontier for the MOO model with diversity of Pareto-optimal solutions maximized; the other is to evaluate a given inspection plan and provide possible suggestions for improvement. The methodologies are described in detail and case studies provided. The case studies show that this MOO based primary planning model can effectively pick out the non-conforming trucks to inspect, while balancing the costs and waiting time.
ContributorsXue, Liangjie (Author) / Villalobos, Jesus René (Thesis advisor) / Gel, Esma (Committee member) / Runger, George C. (Committee member) / Maltz, Arnold (Committee member) / Arizona State University (Publisher)
Created2012
154077-Thumbnail Image.png
Description
ABSTRACT

This dissertation introduces a real-time topology monitoring scheme for power systems intended to provide enhanced situational awareness during major system disturbances. The topology monitoring scheme requires accurate real-time topology information to be effective. This scheme is supported by advances in transmission line outage detection based on data-mining phasor measurement unit

ABSTRACT

This dissertation introduces a real-time topology monitoring scheme for power systems intended to provide enhanced situational awareness during major system disturbances. The topology monitoring scheme requires accurate real-time topology information to be effective. This scheme is supported by advances in transmission line outage detection based on data-mining phasor measurement unit (PMU) measurements.

A network flow analysis scheme is proposed to track changes in user defined minimal cut sets within the system. This work introduces a new algorithm used to update a previous network flow solution after the loss of a single system branch. The proposed new algorithm provides a significantly decreased solution time that is desired in a real- time environment. This method of topology monitoring can provide system operators with visual indications of potential problems in the system caused by changes in topology.

This work also presents a method of determining all singleton cut sets within a given network topology called the one line remaining (OLR) algorithm. During operation, if a singleton cut set exists, then the system cannot withstand the loss of any one line and still remain connected. The OLR algorithm activates after the loss of a transmission line and determines if any singleton cut sets were created. These cut sets are found using properties of power transfer distribution factors and minimal cut sets.

The topology analysis algorithms proposed in this work are supported by line outage detection using PMU measurements aimed at providing accurate real-time topology information. This process uses a decision tree (DT) based data-mining approach to characterize a lost tie line in simulation. The trained DT is then used to analyze PMU measurements to detect line outages. The trained decision tree was applied to real PMU measurements to detect the loss of a 500 kV line and had no misclassifications.

The work presented has the objective of enhancing situational awareness during significant system disturbances in real time. This dissertation presents all parts of the proposed topology monitoring scheme and justifies and validates the methodology using a real system event.
ContributorsWerho, Trevor Nelson (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald (Committee member) / Hedman, Kory (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2015
161714-Thumbnail Image.png
Description
Decision support systems aid the human-in-the-loop by enhancing the quality of decisions and the ease of making them in complex decision-making scenarios. In the recent years, such systems have been empowered with automated techniques for sequential decision making or planning tasks to effectively assist and cooperate with the human-in-the-loop. This

Decision support systems aid the human-in-the-loop by enhancing the quality of decisions and the ease of making them in complex decision-making scenarios. In the recent years, such systems have been empowered with automated techniques for sequential decision making or planning tasks to effectively assist and cooperate with the human-in-the-loop. This has received significant recognition in the planning as well as human computer interaction communities as such systems connect the key elements of automated planning in decision support to principles of naturalistic decision making in the HCI community. A decision support system, in addition to providing planning support, must be able to provide intuitive explanations based on specific user queries for proposed decisions to its end users. Using this as motivation, I consider scenarios where the user questions the system's suggestion by providing alternatives (referred to as foils). In response, I empower existing decision support technologies to engage in an interactive explanatory dialogue with the user and provide contrastive explanations based on user-specified foils to reach a consensus on proposed decisions. Furthermore, the foils specified by the user can be indicative of the latent preferences of the user. I use this interpretation to equip existing decision support technologies with three different interaction strategies that utilize the foil to provide revised plan suggestions. Finally, as part of my Master's thesis, I present RADAR-X, an extension of RADAR, a proactive decision support system, that showcases the above mentioned capabilities. Further, I present a user-study evaluation that emphasizes the need for contrastive explanations and a computational evaluation of the mentioned interaction strategies.
ContributorsValmeekam, Karthik (Author) / Kambhampati, Subbarao (Thesis advisor) / Chiou, Erin (Committee member) / Sengupta, Sailik (Committee member) / Arizona State University (Publisher)
Created2021