Matching Items (2)
Filtering by

Clear all filters

153309-Thumbnail Image.png
Description
Photosystem I (PSI) is a multi-subunit, pigment-protein complex that catalyzes light-driven electron transfer (ET) in its bi-branched reaction center (RC). Recently it was suggested that the initial charge separation (CS) event can take place independently within each ec2/ec3 chlorophyll pair. In order to improve our understanding of this phenomenon, we

Photosystem I (PSI) is a multi-subunit, pigment-protein complex that catalyzes light-driven electron transfer (ET) in its bi-branched reaction center (RC). Recently it was suggested that the initial charge separation (CS) event can take place independently within each ec2/ec3 chlorophyll pair. In order to improve our understanding of this phenomenon, we have generated new mutations in the PsaA and PsaB subunits near the electron transfer cofactor 2 (ec2 chlorophyll). PsaA-Asn604 accepts a hydrogen bond from the water molecule that is the axial ligand of ec2B and the case is similar for PsaB-Asn591 and ec2A. The second set of targeted sites was PsaA-Ala684 and PsaB-Ala664, whose methyl groups are present near ec2A and ec2B, respectively. We generated a number of mutants by targeting the selected protein residues. These mutations were expected to alter the energetics of the primary charge separation event.

The PsaA-A684N mutants exhibited increased ET on the B-branch as compared to the A-branch in both in vivo and in vitro conditions. The transient electron paramagnetic resonance (EPR) spectroscopy revealed the formation of increased B-side radical pair (RP) at ambient and cryogenic temperatures. The ultrafast transient absorption spectroscopy and fluorescence decay measurement of the PsaA-A684N and PsaB-A664N showed a slight deceleration of energy trapping. Thus making mutations near ec2 on each branch resulted into modulation of the charge separation process. In the second set of mutants, where ec2 cofactor was target by substitution of PsaA-Asn604 or PsaB-Asn591 to other amino acids, a drop in energy trapping was observed. The quantum yield of CS decreases in Asn to Leu and His mutants on the respective branch. The P700 triplet state was not observed at room and cryogenic temperature for these mutants, nor was a rapid decay of P700+ in the nanosecond timescale, indicating that the mutations do not cause a blockage of electron transfer from the ec3 Chl. Time-resolved fluorescence results showed a decrease in the lifetime of the energy trapping. We interpret this decrease in lifetime as a new channel of excitation energy decay, in which the untrapped energy dissipates as heat through a fast internal conversion process. Thus, a variety of spectroscopic measurements of PSI with point mutations near the ec2 cofactor further support that the ec2 cofactor is involved in energy trapping process.
ContributorsBadshah, Syed Lal (Author) / Redding, Kevin E (Thesis advisor) / Fromme, Petra (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
156716-Thumbnail Image.png
Description
To mimic the membrane environment for the photosynthetic reaction center of the photoheterotrophic Heliobacterium modesticaldum, a proteoliposome system was developed using the lipids found in native membranes, as well as a lipid possessing a Ni(II)-NTA head group. The liposomes were also saturated with menaquinone-9 to provide further native conditions, given

To mimic the membrane environment for the photosynthetic reaction center of the photoheterotrophic Heliobacterium modesticaldum, a proteoliposome system was developed using the lipids found in native membranes, as well as a lipid possessing a Ni(II)-NTA head group. The liposomes were also saturated with menaquinone-9 to provide further native conditions, given that menaquinone is active within the heliobacterial reaction center in some way. Purified heliobacterial reaction center was reconstituted into the liposomes and a recombinant cytochrome c553 was decorated onto the liposome surface. The native lipid-attachment sequence of cytochrome c553 was truncated and replaced with a hexahistidine tag. Thus, the membrane-anchoring observed in vivo was simulated through the histidine tag of the recombinant cytochrome binding to the Ni(II)-NTA lipid's head group. The kinetics of electron transfer in this system was measured and compared to native membranes using transient absorption spectroscopy. The preferential-orientation of reconstituted heliobacterial reaction center was also measured by monitoring the proteoliposome system's ability to reduce a soluble acceptor, flavodoxin, in both whole and detergent-solubilized proteoliposome conditions. These data demonstrate that this proteoliposome system is reliable, biomimetic, and efficient for selectively testing the function of the photosynthetic reaction center of Heliobacterium modesticaldum and its interactions with both donors and acceptors. The recombinant cytochrome c553 performs similarly to native cytochrome c553 in heliobacterial membranes. These data also support the hypothesis that the orientation of the reconstituted reaction center is inherently selective for its bacteriochlorophyll special pair directed to the outer-leaflet of the liposome.
ContributorsJohnson, William Alexander (Author) / Redding, Kevin E (Thesis advisor) / Van Horn, Wade D (Committee member) / Jones, Anne K (Committee member) / Arizona State University (Publisher)
Created2018