Matching Items (2)
Filtering by

Clear all filters

150947-Thumbnail Image.png
Description
Understanding the temperature structure of protoplanetary disks (PPDs) is paramount to modeling disk evolution and future planet formation. PPDs around T Tauri stars have two primary heating sources, protostellar irradiation, which depends on the flaring of the disk, and accretional heating as viscous coupling between annuli dissipate energy. I have

Understanding the temperature structure of protoplanetary disks (PPDs) is paramount to modeling disk evolution and future planet formation. PPDs around T Tauri stars have two primary heating sources, protostellar irradiation, which depends on the flaring of the disk, and accretional heating as viscous coupling between annuli dissipate energy. I have written a "1.5-D" radiative transfer code to calculate disk temperatures assuming hydrostatic and radiative equilibrium. The model solves for the temperature at all locations simultaneously using Rybicki's method, converges rapidly at high optical depth, and retains full frequency dependence. The likely cause of accretional heating in PPDs is the magnetorotational instability (MRI), which acts where gas ionization is sufficiently high for gas to couple to the magnetic field. This will occur in surface layers of the disk, leaving the interior portions of the disk inactive ("dead zone"). I calculate temperatures in PPDs undergoing such "layered accretion." Since the accretional heating is concentrated far from the midplane, temperatures in the disk's interior are lower than in PPDs modeled with vertically uniform accretion. The method is used to study for the first time disks evolving via the magnetorotational instability, which operates primarily in surface layers. I find that temperatures in layered accretion disks do not significantly differ from those of "passive disks," where no accretional heating exists. Emergent spectra are insensitive to active layer thickness, making it difficult to observationally identify disks undergoing layered vs. uniform accretion. I also calculate the ionization chemistry in PPDs, using an ionization network including multiple charge states of dust grains. Combined with a criterion for the onset of the MRI, I calculate where the MRI can be initiated and the extent of dead zones in PPDs. After accounting for feedback between temperature and active layer thickness, I find the surface density of the actively accreting layers falls rapidly with distance from the protostar, leading to a net outward flow of mass from ~0.1 to 3 AU. The clearing out of the innermost zones is possibly consistent with the observed behavior of recently discovered "transition disks."
ContributorsLesniak, Michael V., III (Author) / Desch, Steven J. (Thesis advisor) / Scannapieco, Evan (Committee member) / Timmes, Francis (Committee member) / Starrfield, Sumner (Committee member) / Belitsky, Andrei (Committee member) / Arizona State University (Publisher)
Created2012
168500-Thumbnail Image.png
Description
The lives of high-mass stars end with core-collapse supernovae, which distribute energy and chemical elements into the interstellar medium. This process is integral to the Galactic ecosystem, since stars and planets will form from the enriched interstellar medium. Since most supernovae are detected at intergalactic distances, opportunities to examine them

The lives of high-mass stars end with core-collapse supernovae, which distribute energy and chemical elements into the interstellar medium. This process is integral to the Galactic ecosystem, since stars and planets will form from the enriched interstellar medium. Since most supernovae are detected at intergalactic distances, opportunities to examine them in detail are rare. Computer simulations and observations of supernova remnants are frequently employed to study these events and their influence on the universe. I explore the topic of supernovae using a multi-pronged approach, beginning with an examination of the core-collapse supernova engine. The radioisotopes 44Ti and 56Ni, produced in the innermost ejecta, provide a probe of this central engine. Using a three-dimensional supernova simulation with nucleosynthesis post-processing, I examine the production of these isotopes and their thermodynamic histories. Since production of 44Ti is especially sensitive to the explosion conditions, insights can be gained by comparing the model with 44Ti observations from supernova remnant Cassiopeia A. Next, I consider supernova remnants as potential sources of high-energy neutrinos within the Milky Way galaxy. The developing field of neutrino astronomy has yet to identify the origins of the diffuse neutrino flux first detected by the IceCube Neutrino Observatory in 2013. In principle, high-energy Galactic sources like supernova remnants could contribute measurably to this flux. I also consider Galactic open clusters, environments which are rich in supernovae and other energetic phenomena. Statistical analysis finds no evidence of causal association between these objects and the IceCube neutrino events. I conclude with a series of asymmetric three-dimensional supernova models, presented as a comparative analysis of how supernova morphology affects nucleosynthetic yields. Both real supernovae and simulations frequently exhibit aspherical morphologies, but the detailed thermodynamic consequences and the ultimate effects on yields are poorly understood. The simulations include symmetric and bipolar explosion geometries for both 15- and 20-solar-mass progenitor stars. Across the spectrum of models, I show how small changes in the peak temperatures and densities experienced by ejecta can influence the production of notable isotopes such as 44Ti.
ContributorsVance, Gregory Scott (Author) / Young, Patrick (Thesis advisor) / Scannapieco, Evan (Committee member) / Lunardini, Cecilia (Committee member) / Windhorst, Rogier (Committee member) / Starrfield, Sumner (Committee member) / Arizona State University (Publisher)
Created2021