Matching Items (5)
Filtering by

Clear all filters

150907-Thumbnail Image.png
Description
The presence of compounds such as pharmaceuticals and personal care products (PPCPs) in the environment is a cause for concern as they exhibit secondary effects on non-target organisms and are also indicative of incomplete removal by wastewater treatment plants (WWTPs) during water reclamation. Analytical methods and predictive models can hel

The presence of compounds such as pharmaceuticals and personal care products (PPCPs) in the environment is a cause for concern as they exhibit secondary effects on non-target organisms and are also indicative of incomplete removal by wastewater treatment plants (WWTPs) during water reclamation. Analytical methods and predictive models can help inform on the rates at which these contaminants enter the environment via biosolids use or wastewater effluent release to estimate the risk of adverse effects. The goals of this research project were to integrate the results obtained from the two different methods of risk assessment, (a) in silico modeling and (b) experimental analysis. Using a previously published empirical model, influent and effluent concentration ranges were predicted for 10 sterols and validated with peer-reviewed literature. The in silico risk assessment analysis performed for sterols and hormones in biosolids concluded that hormones possess high leaching potentials and that particularly 17-α-ethinyl estradiol (EE2) can pose significant threat to fathead minnows (P. promelas) via leaching from terrestrial depositions of biosolids. Six mega-composite biosolids samples representative of 94 WWTPs were analyzed for a suite of 120 PPCPs using the extended U.S. EPA Method 1694 protocol. Results indicated the presence of 26 previously unmonitored PPCPs in the samples with estimated annual release rates of 5-15 tons yr-1 via land application of biosolids. A mesocosm sampling analysis that was included in the study concluded that four compounds amitriptyline, paroxetine, propranolol and sertraline warrant further monitoring due to their high release rates from land applied biosolids and their calculated extended half-lives in soils. There is a growing interest in the scientific community towards the development of new analytical protocols for analyzing solid matrices such as biosolids for the presence of PPCPs and other established and emerging contaminants of concern. The two studies presented here are timely and an important addition to the increasing base of scientific articles regarding environmental release of PPCPs and exposure risks associated with biosolids land application. This research study emphasizes the need for coupling experimental results with predictive analytical modeling output in order to more fully assess the risks posed by compounds detected in biosolids.
ContributorsPrakash Chari, Bipin (Author) / Halden, Rolf U. (Thesis advisor) / Westerhoff, Paul (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2012
153232-Thumbnail Image.png
Description
Since its first report in 1976, many outbreaks of Legionella have been reported in the world. These outbreaks are a public health concern because of legionellosis, which cause Pontiac fever and Legionnaires disease. Legionnaires disease is a type of pneumonia responsible for the majority of the illness in

Since its first report in 1976, many outbreaks of Legionella have been reported in the world. These outbreaks are a public health concern because of legionellosis, which cause Pontiac fever and Legionnaires disease. Legionnaires disease is a type of pneumonia responsible for the majority of the illness in the reported outbreaks. This study consists of an extensive literature review and experimental work on the aerosolization of Legionella and a bacterial surrogate under laboratory conditions. The literature review summarizes Legionella characteristics, legionellosis, potential sources of Legionella, disease outbreaks, collection and detection methodologies, environmental conditions for growth and survival of Legionella, Gaussian plume dispersion modeling, and recommendations for reducing potential Legionella outbreaks. The aerosolization and airborne dispersion of Legionella and E. coli was conducted separately inside of a closed environment. First, the bacterial cells were sprayed inside of an airtight box and then samples were collected using a microbial air sampler to measure the number of bacterial cells aerosolized and transported in air. Furthermore, a Gaussian plume dispersion model was used to estimate the dispersion under the experimental conditions and parameters. The concentration of Legionella was estimated for a person inhaling the air at three different distances away from the spray. The concentration of Legionella at distances of 0.1 km, 1 km, and 10 km away from the source was predicted to be 1.7x10-1, 2.2x10-3, and 2.6x10-5 CFU/m3, respectively.
ContributorsTaghdiri, Sepideh (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Estes, Robert (Committee member) / Arizona State University (Publisher)
Created2014
153234-Thumbnail Image.png
Description
Granular activated carbon (GAC) filters are final polishing step in the drinking water treatment systems for removal of dissolved organic carbon fractions. Generally filters are colonized by bacterial communities and their activity reduces biodegradable solutes allowing partial regeneration of GAC's adsorptive capacity. When the bacteria pass into the filtrate due

Granular activated carbon (GAC) filters are final polishing step in the drinking water treatment systems for removal of dissolved organic carbon fractions. Generally filters are colonized by bacterial communities and their activity reduces biodegradable solutes allowing partial regeneration of GAC's adsorptive capacity. When the bacteria pass into the filtrate due to increased growth, microbiological quality of drinking water is compromised and regrowth in the distribution system occurs. Bacteria attached to carbon particles as biofilms or in conjugation with other bacteria were observed to be highly resistant to post filtration microbial mitigation techniques. Some of these bacteria were identified as pathogenic.

This study focuses on one such pathogen Legionella pneumophila which is resistant to environmental stressors and treatment conditions. It is also responsible for Legionnaires' disease outbreak through drinking water thus attracting attention of regulatory agencies. The work assessed the attachment and colonization of Legionella and heterotrophic bacteria in lab scale GAC media column filters. Quantification of Legionella and HPC in the influent, effluent, column's biofilms and on the GAC particles was performed over time using fluorescent microscopy and culture based techniques.

The results indicated gradual increase in the colonization of the GAC particles with HPC bacteria. Initially high number of Legionella cells were detected in the column effluent and were not detected on GAC suggesting low attachment of the cells to the particles potentially due to lack of any previous biofilms. With the initial colonization of the filter media by other bacteria the number of Legionella cells on the GAC particles and biofilms also increased. Presence of Legionella was confirmed in all the samples collected from the columns spiked with Legionella. Significant increase in the Legionella was observed in column's inner surface biofilm (0.25 logs up to 0.52 logs) and on GAC particles (0.42 logs up to 0.63 logs) after 2 months. Legionella and HPC attached to column's biofilm were higher than that on GAC particles indicating the strong association with biofilms. The bacterial concentration slowly increased in the effluent. This may be due to column's wall effect decreasing filter efficiency, possible exhaustion of GAC capacity over time and potential bacterial growth.
ContributorsSharma, Harsha (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2014
156429-Thumbnail Image.png
Description
Legionella pneumophila is a waterborne pathogen that causes Legionnaires' disease, an infection which can lead to potentially fatal pneumonia. In a culture-based technique, Legionella is detected using buffered charcoal-yeast extract (BCYE) agar supplemented with L-cysteine, Iron salt and antibiotics. These supplements provide essential and complex nutrient requirements and help in

Legionella pneumophila is a waterborne pathogen that causes Legionnaires' disease, an infection which can lead to potentially fatal pneumonia. In a culture-based technique, Legionella is detected using buffered charcoal-yeast extract (BCYE) agar supplemented with L-cysteine, Iron salt and antibiotics. These supplements provide essential and complex nutrient requirements and help in the suppression of non-target bacteria in Legionella analysis. Legionella occurs naturally in freshwater environments and for their detection; a sample is plated on solid agar media and then incubated for several days. There are many challenges in the detection of Legionella in environmental waters and the built environments. A common challenge is that a variety of environmental bacteria can be presumptively identified as Legionella using the culture-based method. In addition, proper identification of Legionella requires long incubation period (3-9 days) while antibiotics used in BCYE agar have relatively short half-life time. In order to overcome some of the challenges, Legionella has been genetically modified to express reporter genes such Green Fluorescent Protein (GFP) that can facilitate its detection in process validation studies under controlled laboratory conditions. However, such studies had limited success due to the instability of genetically modified Legionella strains. The development of a genetically modified Legionella with a much rapid growth rate (1-2 days) in simulated environmental systems (tightly-controlled water distribution system) is achieved. The mutant Legionella is engineered by transforming with a specific plasmid encoding CymR, LacZ and TetR genes. The newly engineered Legionella can grow on conventional BCYE agar media without L-Cysteine, Iron salt and only require one antibiotic (Tetracycline) to suppress the growth of other microorganisms in media. To the best of our knowledge, this is the first report of L. pneumophila strain capable of growing without L-Cysteine. We believe that this discovery would not only facilitate the study of the fate and transport of this pathogen in environmental systems, but also further our understanding of the genetics and metabolic pathways of Legionella.
ContributorsAloraini, Saleh Ali A (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Alum, Absar (Committee member) / Arizona State University (Publisher)
Created2018
157746-Thumbnail Image.png
Description
Imagine you live in a place without any storm water or wastewater systems!

Wastewater and storm water systems are two of the most crucial systems for urban infrastructure. Water resources have become more limited and expensive in arid and semi-arid regions. According to the fourth World Water Development Report, over

Imagine you live in a place without any storm water or wastewater systems!

Wastewater and storm water systems are two of the most crucial systems for urban infrastructure. Water resources have become more limited and expensive in arid and semi-arid regions. According to the fourth World Water Development Report, over 80% of global wastewater is released into the environment without adequate treatment. Wastewater collection and treatment systems in the Kingdom of Saudi Arabia (KSA) covers about 49% of urban areas; about 25% of treated wastewater is used for landscape and crop irrigation (Ministry of Environment Water and Agriculture [MEWA], 2017). According to Guizani (2016), during each event of flooding, there are fatalities. In 2009, the most deadly flood occurred in Jeddah, KSA within more than 160 lives lost. As a consequence, KSA has set a goal to provide 100% sewage collection and treatment services to every city with a population above 5000 by 2025, where all treated wastewater will be used.

This research explores several optimization models of planning and designing collection systems, such as regional wastewater and stormwater systems, in order to understand and overcome major performance-related disadvantages and high capital costs. The first model (M-1) was developed for planning regional wastewater system, considering minimum costs of location, type, and size sewer network and wastewater treatment plants (WWTPs). The second model (M-2) was developed for designing a regional wastewater system, considering minimum hydraulic design costs, such as pump stations, commercial diameters, excavation costs, and WWTPs. Both models were applied to the Jizan region, KSA.

The third model (M-3) was developed to solve layout and pipe design for storm water systems simultaneously. This model was applied to four different case scenarios, using two approaches for commercial diameters. The fourth model (M-4) was developed to solve the optimum pipe design of a storm sewer system for given layouts. However, M-4 was applied to a storm sewer network published in the literature.

M-1, M-2, and M-3 were developed in the general algebraic modeling system (GAMS) program, which was formulated as a mixed integer nonlinear programming (MINLP) solver, while M-4 was formulated as a nonlinear programming (NLP) procedure.
ContributorsAlfaisal, Faisal M (Author) / Mays, Larry W. (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2019