Matching Items (2,111)
Filtering by

Clear all filters

150688-Thumbnail Image.png
Description
Otoacoustic emissions (OAEs) are soft sounds generated by the inner ear and can be recorded within the ear canal. Since OAEs can reflect the functional status of the inner ear, OAE measurements have been widely used for hearing loss screening in the clinic. However, there are limitations in current clinical

Otoacoustic emissions (OAEs) are soft sounds generated by the inner ear and can be recorded within the ear canal. Since OAEs can reflect the functional status of the inner ear, OAE measurements have been widely used for hearing loss screening in the clinic. However, there are limitations in current clinical OAE measurements, such as the restricted frequency range, low efficiency and inaccurate calibration. In this dissertation project, a new method of OAE measurement which used a swept tone to evoke the stimulus frequency OAEs (SFOAEs) was developed to overcome the limitations of current methods. In addition, an in-situ calibration was applied to equalize the spectral level of the swept-tone stimulus at the tympanic membrane (TM). With this method, SFOAEs could be recorded with high resolution over a wide frequency range within one or two minutes. Two experiments were conducted to verify the accuracy of the in-situ calibration and to test the performance of the swept-tone SFOAEs. In experiment I, the calibration of the TM sound pressure was verified in both acoustic cavities and real ears by using a second probe microphone. In addition, the benefits of the in-situ calibration were investigated by measuring OAEs under different calibration conditions. Results showed that the TM pressure could be predicted correctly, and the in-situ calibration provided the most reliable results in OAE measurements. In experiment II, a three-interval paradigm with a tracking-filter technique was used to record the swept-tone SFOAEs in 20 normal-hearing subjects. The test-retest reliability of the swept-tone SFOAEs was examined using a repeated-measure design under various stimulus levels and durations. The accuracy of the swept-tone method was evaluated by comparisons with a standard method using discrete pure tones. Results showed that SFOAEs could be reliably and accurately measured with the swept-tone method. Comparing with the pure-tone approach, the swept-tone method showed significantly improved efficiency. The swept-tone SFOAEs with in-situ calibration may be an alternative of current clinical OAE measurements for more detailed evaluation of inner ear function and accurate diagnosis.
ContributorsChen, Shixiong (Author) / Bian, Lin (Thesis advisor) / Yost, William (Committee member) / Azuma, Tamiko (Committee member) / Dorman, Michael (Committee member) / Arizona State University (Publisher)
Created2012
173937-Thumbnail Image.png
Description

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty times before they cannot divide any further. Researchers later found that the cause of the Hayflick Limit is the shortening of telomeres, or portions of DNA at the ends of chromosomes that slowly degrade as cells replicate. Hayflick used his research on normal embryonic cells to develop a vaccine for polio, and from HayflickÕs published directions, scientists developed vaccines for rubella, rabies, adenovirus, measles, chickenpox and shingles.

Created2014-07-20
173939-Thumbnail Image.png
Description

Although best known for his work with the fruit fly, for which he earned a Nobel Prize and the title "The Father of Genetics," Thomas Hunt Morgan's contributions to biology reach far beyond genetics. His research explored questions in embryology, regeneration, evolution, and heredity, using a variety of approaches.

Created2007-09-25
173947-Thumbnail Image.jpg
Created1935