Matching Items (6)
152540-Thumbnail Image.png
Description
Past research has shown that students have difficulty developing a robust conception of function. However, little prior research has been performed dealing with student knowledge of function composition, a potentially powerful mathematical concept. This dissertation reports the results of an investigation into student understanding and use of function composition, set

Past research has shown that students have difficulty developing a robust conception of function. However, little prior research has been performed dealing with student knowledge of function composition, a potentially powerful mathematical concept. This dissertation reports the results of an investigation into student understanding and use of function composition, set against the backdrop of a precalculus class that emphasized quantification and covariational reasoning. The data were collected using task-based, semi-structured clinical interviews with individual students outside the classroom. Findings from this study revealed that factors such as the student's quantitative reasoning, covariational reasoning, problem solving behaviors, and view of function influence how a student understands and uses function composition. The results of the study characterize some of the subtle ways in which these factors impact students' ability to understand and use function composition to solve problems. Findings also revealed that other factors such as a students' persistence, disposition towards "meaning making" for the purpose of conceptualizing quantitative relationships, familiarity with the context of a problem, procedural fluency, and student knowledge of rules of "order of operations" impact a students' progress in advancing her/his solution approach.
ContributorsBowling, Stacey (Author) / Carlson, Marilyn P (Thesis advisor) / Thompson, Patrick W (Committee member) / Moore, Kevin C (Committee member) / Milner, Fabio (Committee member) / Van de Sande, Carla (Committee member) / Arizona State University (Publisher)
Created2014
152807-Thumbnail Image.png
Description
Based on poor student performance in past studies, the incoherence present in the teaching of inverse functions, and teachers' own accounts of their struggles to teach this topic, it is apparent that the idea of function inverse deserves a closer look and an improved pedagogical approach. This improvement must enhance

Based on poor student performance in past studies, the incoherence present in the teaching of inverse functions, and teachers' own accounts of their struggles to teach this topic, it is apparent that the idea of function inverse deserves a closer look and an improved pedagogical approach. This improvement must enhance students' opportunity to construct a meaning for a function's inverse and, out of that meaning, produce ways to define a function's inverse without memorizing some procedure. This paper presents a proposed instructional sequence that promotes reflective abstraction in order to help students develop a process conception of function and further understand the meaning of a function inverse. The instructional sequence was used in a teaching experiment with three subjects and the results are presented here. The evidence presented in this paper supports the claim that the proposed instructional sequence has the potential to help students construct meanings needed for understanding function inverse. The results of this study revealed shifts in the understandings of all three subjects. I conjecture that these shifts were achieved by posing questions that promoted reflective abstraction. The questions and subsequent interactions appeared to result in all three students moving toward a process conception of function.
ContributorsFowler, Bethany (Author) / Carlson, Marilyn (Thesis advisor) / Roh, Kyeong (Committee member) / Zandieh, Michelle (Committee member) / Arizona State University (Publisher)
Created2014
152858-Thumbnail Image.png
Description
This study investigated the current state of the U.S. and Chinese urban middle school math teachers' pedagogical content knowledge (PCK) for the topic of functions. A comparative, descriptive case study was employed to capture the PCK of 23 teachers in Arizona and of 28 teachers in Beijing, regarding their instructional

This study investigated the current state of the U.S. and Chinese urban middle school math teachers' pedagogical content knowledge (PCK) for the topic of functions. A comparative, descriptive case study was employed to capture the PCK of 23 teachers in Arizona and of 28 teachers in Beijing, regarding their instructional knowledge, understanding of student thinking and curricular knowledge--three key components based on Shulman's conceptualization of PCK--related to functions. Cross-case comparisons were used to analyze the PCK of teacher groups across countries and socio-economic statuses (SES), based on the questionnaire, lesson plan, and interview data.

This study finds that despite cultural differences, teachers are likely to share some commonalities with respect to their instructional decisions, understanding of student thinking and curricular knowledge. These similarities may reflect the convergence in teaching practice in the U.S. and China and the dedication the two countries make in improving math education. This study also finds the cross-country differences and cross-SES differences regarding teachers' PCK. On the one hand, the U.S. and Chinese math teachers of this study tend to diverge in valuing different forms of representations, explaining student misconceptions, and relating functions to other math topics. Teachers' own understanding of functions (and mathematics), standards, and high-stakes testing in each country significantly influence their PCK. On the other hand, teachers from the higher SES schools are more likely to show higher expectations for and stronger confidence in their students' mathematical skills compared to their counterparts from the lower SES schools. Teachers' differential beliefs in students' ability levels significantly contribute to their differences between socio-economic statuses.
ContributorsZou, Hui (Author) / Fischman, Gustavo (Thesis advisor) / Berliner, David (Committee member) / Sloane, Finbarr (Committee member) / Arizona State University (Publisher)
Created2014
150539-Thumbnail Image.png
Description
This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet

This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet vector calculus, calculus on manifolds, linear algebra, and differential equations all rest upon the idea of functions of two (or more) variables. This dissertation contributes to understanding productive ways of thinking that can support students in thinking about functions of two or more variables as they describe complex systems with multiple variables interacting. This dissertation focuses on modeling the way of thinking of four students who participated in a specific instructional sequence designed to explore the limits of their ways of thinking and in turn, develop a robust model that could explain, describe, and predict students' actions relative to specific tasks. The data was collected using a teaching experiment methodology, and the tasks within the teaching experiment leveraged quantitative reasoning and covariation as foundations of students developing a coherent understanding of two-variable functions and their rates of change. The findings of this study indicated that I could characterize students' ways of thinking about two-variable functions by focusing on their use of novice and/or expert shape thinking, and the students' ways of thinking about rate of change by focusing on their quantitative reasoning. The findings suggested that quantitative and covariational reasoning were foundational to a student's ability to generalize their understanding of a single-variable function to two or more variables, and their conception of rate of change to rate of change at a point in space. These results created a need to better understand how experts in the field, such as mathematicians and mathematics educators, thinking about multivariable functions and their rates of change.
ContributorsWeber, Eric David (Author) / Thompson, Patrick (Thesis advisor) / Middleton, James (Committee member) / Carlson, Marilyn (Committee member) / Saldanha, Luis (Committee member) / Milner, Fabio (Committee member) / Van de Sande, Carla (Committee member) / Arizona State University (Publisher)
Created2012
157632-Thumbnail Image.png
Description
Functions represented in the graphical register, as graphs in the Cartesian plane, are found throughout secondary and undergraduate mathematics courses. In the study of Calculus, specifically, graphs of functions are particularly prominent as a means of illustrating key concepts. Researchers have identified that some of the ways that students may

Functions represented in the graphical register, as graphs in the Cartesian plane, are found throughout secondary and undergraduate mathematics courses. In the study of Calculus, specifically, graphs of functions are particularly prominent as a means of illustrating key concepts. Researchers have identified that some of the ways that students may interpret graphs are unconventional, which may impact their understanding of related mathematical content. While research has primarily focused on how students interpret points on graphs and students’ images related to graphs as a whole, details of how students interpret and reason with variables and expressions on graphs of functions have remained unclear.

This dissertation reports a study characterizing undergraduate students’ interpretations of expressions in the graphical register with statements from Calculus, its association with their evaluations of these statements, its relation to the mathematical content of these statements, and its relation to their interpretations of points on graphs. To investigate students’ interpretations of expressions on graphs, I conducted 150-minute task-based clinical interviews with 13 undergraduate students who had completed Calculus I with a range of mathematical backgrounds. In the interviews, students were asked to evaluate propositional statements about functions related to key definitions and theorems of Calculus and were provided various graphs of functions to make their evaluations. The central findings from this study include the characteristics of four distinct interpretations of expressions on graphs that students used in this study. These interpretations of expressions on graphs I refer to as (1) nominal, (2) ordinal, (3) cardinal, and (4) magnitude. The findings from this study suggest that different contexts may evoke different graphical interpretations of expressions from the same student. Further, some interpretations were shown to be associated with students correctly evaluating some statements while others were associated with students incorrectly evaluating some statements.

I report the characteristics of these interpretations of expressions in the graphical register and its relation to their evaluations of the statements, the mathematical content of the statements, and their interpretation of points. I also discuss the implications of these findings for teaching and directions for future research in this area.
ContributorsDavid, Erika Johara (Author) / Roh, Kyeong Hah (Thesis advisor) / Thompson, Patrick W (Committee member) / Zandieh, Michelle (Committee member) / Dawkins, Paul C (Committee member) / Zazkis, Dov (Committee member) / Arizona State University (Publisher)
Created2019
161800-Thumbnail Image.png
Description
This dissertation is on the topic of sameness of representation of mathematical entities from a mathematics education perspective. In mathematics, people frequently work with different representations of the same thing. This is especially evident when considering the prevalence of the equals sign (=). I am adopting the three-paper dissertation model.

This dissertation is on the topic of sameness of representation of mathematical entities from a mathematics education perspective. In mathematics, people frequently work with different representations of the same thing. This is especially evident when considering the prevalence of the equals sign (=). I am adopting the three-paper dissertation model. Each paper reports on a study that investigates understandings of the identity relation. The first study directly addresses function identity: how students conceptualize, work with, and assess sameness of representation of function. It uses both qualitative and quantitative methods to examine how students understand function sameness in calculus contexts. The second study is on the topic of implicit differentiation and student understanding of the legitimacy of it as a procedure. This relates to sameness insofar as differentiating an equation is a valid inference when the equation expresses function identity. The third study directly addresses usage of the equals sign (“=”). In particular, I focus on the notion of symmetry; equality is a symmetric relation (truth-functionally), and mathematicians understand it as such. However, results of my study show that usage is not symmetric. This is small qualitative study and incorporates ideas from the field of linguistics.
ContributorsMirin, Alison (Author) / Zazkis, Dov (Thesis advisor) / Dawkins, Paul C. (Committee member) / Thompson, Patrick W. (Committee member) / Milner, Fabio (Committee member) / Kawski, Matthias (Committee member) / Arizona State University (Publisher)
Created2021