Matching Items (2)
152542-Thumbnail Image.png
Description
In order to maintain its global position, the United States needs to increase the number of students opting for science careers. Science teachers face a formidable challenge. Students are not choosing science because they do not think coursework is interesting or applies to their lives. These problems often compound for

In order to maintain its global position, the United States needs to increase the number of students opting for science careers. Science teachers face a formidable challenge. Students are not choosing science because they do not think coursework is interesting or applies to their lives. These problems often compound for adolescents in urban areas. This action research investigated an innovation aimed at engaging a group of adolescents in the science learning process through cognitive processes and conceptual understanding. It was hoped that this combination would increase students' engagement in the classroom and proficiency in science. The study was conducted with 28 juniors and sophomores in an Environmental Science class in an urban high school with a student body of 97% minority students and 86% students receiving free and reduced lunch. The study used a mixed-methods design. Instruments included a pre- and post-test, Thinking Maps, transcripts of student discourse, and a two-part Engagement Observation Instrument. Data analysis included basic descriptives and a grounded theory approach. Findings show students became engaged in activities when cognitive processes were taught prior to content. Furthermore it was discovered that Thinking Maps were perceived to be an easy tool to use to organize students' thinking and processing. Finally there was a significant increase in student achievement. From these findings implications for future practice and research are offered.
ContributorsSingh, Renu (Author) / Zambo, Debby (Thesis advisor) / Hansen, Cory (Committee member) / Snyder, Jan D (Committee member) / Arizona State University (Publisher)
Created2014
150525-Thumbnail Image.png
Description
This study investigated the role of broad cognitive processes in the development of mathematics skills among children and adolescents. The participants for this study were a subsample of a nationally representative sample used in the standardization of the Woodcock-Johnson III Tests of Cognitive Abilities and the Woodcock-Johnson III Tests of

This study investigated the role of broad cognitive processes in the development of mathematics skills among children and adolescents. The participants for this study were a subsample of a nationally representative sample used in the standardization of the Woodcock-Johnson III Tests of Cognitive Abilities and the Woodcock-Johnson III Tests of Achievement, Normative Update (Woodcock, McGrew, & Mather, 2007). Participants were between 5 years old and 18 years old (N = 4721; mean of 10.98 years, median of 10.00 years, standard deviation of 3.48 years), and were 50.7% male and 49.3% female. Structural equation models supported the theoretical suggestion that broad cognitive processes play significant and specific roles in the development of mathematical skills among children and adolescents. Implications for school psychology researchers and practitioners are discussed.
ContributorsCalderón, Carlos Oreste (Author) / Caterino, Linda (Thesis advisor) / Nakagawa, Kathryn (Thesis advisor) / Knight, George (Committee member) / Mcgrew, Kevin (Committee member) / Arizona State University (Publisher)
Created2012