Matching Items (2)
Filtering by

Clear all filters

158072-Thumbnail Image.png
Description
Climate change is affecting power generation globally. Increase in the ambient air

temperature due to the emission of greenhouse gases, caused mainly by burning of fossil fuels, is the most prominent reason for this effect. This increase in the temperature along with the changing precipitation levels has led to the melting

Climate change is affecting power generation globally. Increase in the ambient air

temperature due to the emission of greenhouse gases, caused mainly by burning of fossil fuels, is the most prominent reason for this effect. This increase in the temperature along with the changing precipitation levels has led to the melting of the snow packs and increase in the evaporation levels, thus affecting hydropower. The hydropower in the United States might increase by 8%-60% due to Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 scenarios respectively by 2050. Wind power generation is mainly affected by the change in the wind speed and solar power generation is mainly affected by the increase in the ambient air temperature, changes in precipitation and solar radiation. Solar power output reduces by approximately a total of 2.5 billion kilowatt- hour (kWh) by 2050 for an increase in ambient air temperature of 1 degree Celsius. Increase in the ambient air and water temperature mainly affect the thermal power generation. An increase in the temperature as per the RCP 4.5 and RCP 8.5 climate change scenarios could decrease the total thermal power generation in the United States by an average of 26 billion kWh and a possible income loss of around 1.5 billion dollars. This thesis discusses the various effects of climate change on each of these four power plant types.
ContributorsPenmetsa, Vikramaditya (Author) / Holbert, Keith E. (Thesis advisor) / Hedman, Mojdeh (Committee member) / Wu, Meng (Committee member) / Arizona State University (Publisher)
Created2020
158193-Thumbnail Image.png
Description
Energy is one of the wheels on which the modern world runs. Therefore, standards and limits have been devised to maintain the stability and reliability of the power grid. This research shows a simple methodology for increasing the amount of Inverter-based Renewable Generation (IRG), which is also known as Inverter-based

Energy is one of the wheels on which the modern world runs. Therefore, standards and limits have been devised to maintain the stability and reliability of the power grid. This research shows a simple methodology for increasing the amount of Inverter-based Renewable Generation (IRG), which is also known as Inverter-based Resources (IBR), for that considers the voltage and frequency limits specified by the Western Electricity Coordinating Council (WECC) Transmission Planning (TPL) criteria, and the tie line power flow limits between the area-under-study and its neighbors under contingency conditions. A WECC power flow and dynamic file is analyzed and modified in this research to demonstrate the performance of the methodology. GE's Positive Sequence Load Flow (PSLF) software is used to conduct this research and Python was used to analyze the output data.

The thesis explains in detail how the system with 11% of IRG operated before conducting any adjustments (addition of IRG) and what procedures were modified to make the system run correctly. The adjustments made to the dynamic models are also explained in depth to give a clearer picture of how each adjustment affects the system performance. A list of proposed IRG units along with their locations were provided by SRP, a power utility in Arizona, which were to be integrated into the power flow and dynamic files. In the process of finding the maximum IRG penetration threshold, three sensitivities were also considered, namely, momentary cessation due to low voltages, transmission vs. distribution connected solar generation, and stalling of induction motors. Finally, the thesis discusses how the system reacts to the aforementioned modifications, and how IRG penetration threshold gets adjusted with regards to the different sensitivities applied to the system.
ContributorsAlbhrani, Hashem A M H S (Author) / Pal, Anamitra (Thesis advisor) / Holbert, Keith E. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2020