Matching Items (4)
150140-Thumbnail Image.png
Description
The occurrence of exogenic, meteoritic materials on the surface of any world presents opportunities to explore a variety of significant problems in the planetary sciences. In the case of Mars, meteorites found on its surface may help to 1) constrain atmospheric conditions during their time of arrival; 2) provide insights

The occurrence of exogenic, meteoritic materials on the surface of any world presents opportunities to explore a variety of significant problems in the planetary sciences. In the case of Mars, meteorites found on its surface may help to 1) constrain atmospheric conditions during their time of arrival; 2) provide insights into possible variabilities in meteoroid type sampling between Mars and Earth space environments; 3) aid in our understanding of soil, dust, and sedimentary rock chemistry; 4) assist with the calibration of crater-age dating techniques; and 5) provide witness samples for chemical and mechanical weathering processes. The presence of reduced metallic iron in approximately 88 percent of meteorite falls renders the majority of meteorites particularly sensitive to oxidation by H2O interaction. This makes them excellent markers for H2O occurrence. Several large meteorites have been discovered at Gusev Crater and Meridiani Planum by the Mars Exploration Rovers (MERs). Significant morphologic characteristics interpretable as weathering features in the Meridiani suite of iron meteorites include a 1) large pit lined with delicate iron protrusions suggestive of inclusion removal by corrosive interaction; 2) differentially eroded kamacite and taenite lamellae on three of the meteorites, providing relative timing through cross-cutting relationships with deposition of 3) an iron oxide-rich dark coating; and 4) regmaglypted surfaces testifying to regions of minimal surface modification; with other regions in the same meteorites exhibiting 5) large-scale, cavernous weathering. Iron meteorites found by Mini-TES at both Meridiani Planum and Gusev Crater have prompted laboratory experiments designed to explore elements of reflectivity, dust cover, and potential oxide coatings on their surfaces in the thermal infrared using analog samples. Results show that dust thickness on an iron substrate need be only one tenth as great as that on a silicate rock to obscure its infrared signal. In addition, a database of thermal emission spectra for 46 meteorites was prepared to aid in the on-going detection and interpretation of these valuable rocks on Mars using Mini-TES instruments on both MER spacecraft. Applications to the asteroidal sciences are also relevant and intended for this database.
ContributorsAshley, James Warren (Author) / Christensen, Philip R. (Thesis advisor) / Sharp, Thomas G (Committee member) / Shock, Everett L (Committee member) / Hervig, Richard L (Committee member) / Zolotov, Mikhail Y (Committee member) / Arizona State University (Publisher)
Created2011
153685-Thumbnail Image.png
Description
Hydrogen isotope compositions of the martian atmosphere and crustal materials can provide unique insights into the hydrological and geological evolution of Mars. While the present-day deuterium-to-hydrogen ratio (D/H) of the Mars atmosphere is well constrained (~6 times that of terrestrial ocean water), that of its deep silicate interior (specifically, the

Hydrogen isotope compositions of the martian atmosphere and crustal materials can provide unique insights into the hydrological and geological evolution of Mars. While the present-day deuterium-to-hydrogen ratio (D/H) of the Mars atmosphere is well constrained (~6 times that of terrestrial ocean water), that of its deep silicate interior (specifically, the mantle) is less so. In fact, the hydrogen isotope composition of the primordial martian mantle is of great interest since it has implications for the origin and abundance of water on that planet. Martian meteorites could provide key constraints in this regard, since they crystallized from melts originating from the martian mantle and contain phases that potentially record the evolution of the H2O content and isotopic composition of the interior of the planet over time. Examined here are the hydrogen isotopic compositions of Nominally Anhydrous Phases (NAPs) in eight martian meteorites (five shergottites and three nakhlites) using Secondary Ion Mass Spectrometry (SIMS).

This study presents a total of 113 individual analyses of H2O contents and hydrogen isotopic compositions of NAPs in the shergottites Zagami, Los Angeles, QUE 94201, SaU 005, and Tissint, and the nakhlites Nakhla, Lafayette, and Yamato 000593. The hydrogen isotopic variation between and within meteorites may be due to one or more processes including: interaction with the martian atmosphere, magmatic degassing, subsolidus alteration (including shock), and/or terrestrial contamination. Taking into consideration the effects of these processes, the hydrogen isotope composition of the martian mantle may be similar to that of the Earth. Additionally, this study calculated upper limits on the H2O contents of the shergottite and nakhlite parent melts based on the measured minimum H2O abundances in their maskelynites and pyroxenes, respectively. These calculations, along with some petrogenetic assumptions based on previous studies, were subsequently used to infer the H2O contents of the mantle source reservoirs of the depleted shergottites (200-700 ppm) and the nakhlites (10-100 ppm). This suggests that mantle source of the nakhlites is systematically drier than that of the depleted shergottites, and the upper mantle of Mars may have preserved significant heterogeneity in its H2O content. Additionally, this range of H2O contents is not dissimilar to the range observed for the Earth’s upper mantle.
ContributorsTucker, Kera (Author) / Wadhwa, Meenakshi (Thesis advisor) / Hervig, Richard (Committee member) / Till, Christy (Committee member) / Arizona State University (Publisher)
Created2015
187840-Thumbnail Image.png
Description
ABSTRACTWith the National Aeronautics and Space Administration (NASA) Psyche Mission, humans will soon have the first opportunity to explore a new kind of planetary body: one composed mostly of metal as opposed to stony minerals or ices. Identifying the composition of asteroids from Earth-based observations has been an ongoing challenge.

ABSTRACTWith the National Aeronautics and Space Administration (NASA) Psyche Mission, humans will soon have the first opportunity to explore a new kind of planetary body: one composed mostly of metal as opposed to stony minerals or ices. Identifying the composition of asteroids from Earth-based observations has been an ongoing challenge. Although optical reflectance spectra, radar, and orbital dynamics can constrain an asteroid’s mineralogy and bulk density, in many cases there is not a clear or precise match with analogous materials such as meteorites. Additionally, the surfaces of asteroids and other small, airless planetary bodies can be heavily modified over geologic time by exposure to the space environment. To accurately interpret remote sensing observations of metal-rich asteroids, it is therefore necessary to understand how the processes active on asteroid surfaces affect metallic materials. This dissertation represents a first step toward that understanding. In collaboration with many colleagues, I have performed laboratory experiments on iron meteorites to simulate solar wind ion irradiation, surface heating, micrometeoroid bombardment, and high-velocity impacts. Characterizing the meteorite surface’s physical and chemical properties before and after each experiment can constrain the effects of each process on a metal-rich surface in space. While additional work will be needed for a complete understanding, it is nevertheless possible to make some early predictions of what (16) Psyche’s surface regolith might look like when humans observe it up close. Moreover, the results of these experiments will inform future exploration beyond asteroid Psyche as humans attempt to understand how Earth’s celestial neighborhood came to be.
ContributorsChristoph, John Morgan M. (Author) / Elkins-Tanton, Linda (Thesis advisor) / Williams, David (Committee member) / Dukes, Catherine (Committee member) / Sharp, Thomas (Committee member) / Bell III, James (Committee member) / Arizona State University (Publisher)
Created2023
189290-Thumbnail Image.png
Description
In this research, the chemical and mineralogical compositions, physical and mechanical properties, and failure mechanisms of two ordinary chondrite (OCs) meteorites Aba Panu (L3) and Viñales (L6), and the iron meteorite called Gibeon (IVA) were studied. OCs are dominated by anhydrous silicates with lesser amounts of sulfides and native Fe-Ni

In this research, the chemical and mineralogical compositions, physical and mechanical properties, and failure mechanisms of two ordinary chondrite (OCs) meteorites Aba Panu (L3) and Viñales (L6), and the iron meteorite called Gibeon (IVA) were studied. OCs are dominated by anhydrous silicates with lesser amounts of sulfides and native Fe-Ni metals, while Gibeon is primarily composed of Fe-Ni metals with scattered inclusions of graphite and troilite. The OCs were investigated to understand their response to compressive loading, using a three-dimensional (3-D) Digital Image Correlation (DIC) technique to measure full-field deformation and strain during compression. The DIC data were also used to identify the effects of mineralogical and structural heterogeneity on crack formation and growth. Even though Aba Panu and Viñales are mineralogically similar and are both classified as L ordinary chondrites, they exhibit differences in compressive strengths due to variations in chemical compositions, microstructure, and the presence of cracks and shock veins. DIC data of Aba Panu and Viñales show a brittle failure mechanism, consistent with the crack formation and growth from pre-existing microcracks and porosity. In contrast, the Fe-Ni phases of the Gibeon meteorite deform plastically without rupture during compression, whereas during tension, plastic deformations followed by necking lead to final failure. The Gibeon DIC results showed strain concentration in the tensile gauge region along the sample edge, resulting in the initiation of new damage surfaces that propagated perpendicular to the loading direction. Finally, an in-situ low-temperature testing method of iron meteorites was developed to study the response of their unique microstructure and failure mechanism.
ContributorsRabbi, Md Fazle (Author) / Chattopadhyay, Aditi (Thesis advisor) / Garvie, Laurence A.J. (Thesis advisor) / Liu, Yongming (Committee member) / Fard, Masoud Yekani (Committee member) / Cotto-Figueroa, Desiree (Committee member) / Arizona State University (Publisher)
Created2023