Matching Items (2)
150118-Thumbnail Image.png
Description
Conformational changes in biomolecules often take place on longer timescales than are easily accessible with unbiased molecular dynamics simulations, necessitating the use of enhanced sampling techniques, such as adaptive umbrella sampling. In this technique, the conformational free energy is calculated in terms of a designated set of reaction coordinates. At

Conformational changes in biomolecules often take place on longer timescales than are easily accessible with unbiased molecular dynamics simulations, necessitating the use of enhanced sampling techniques, such as adaptive umbrella sampling. In this technique, the conformational free energy is calculated in terms of a designated set of reaction coordinates. At the same time, estimates of this free energy are subtracted from the potential energy in order to remove free energy barriers and cause conformational changes to take place more rapidly. This dissertation presents applications of adaptive umbrella sampling to a variety of biomolecular systems. The first study investigated the effects of glycosylation in GalNAc2-MM1, an analog of glycosylated macrophage activating factor. It was found that glycosylation destabilizes the protein by increasing the solvent exposure of hydrophobic residues. The second study examined the role of bound calcium ions in promoting the isomerization of a cis peptide bond in the collagen-binding domain of Clostridium histolyticum collagenase. This study determined that the bound calcium ions reduced the barrier to the isomerization of this peptide bond as well as stabilizing the cis conformation thermodynamically, and identified some of the reasons for this. The third study represents the application of GAMUS (Gaussian mixture adaptive umbrella sampling) to on the conformational dynamics of the fluorescent dye Cy3 attached to the 5' end of DNA, and made predictions concerning the affinity of Cy3 for different base pairs, which were subsequently verified experimentally. Finally, the adaptive umbrella sampling method is extended to make use of the roll angle between adjacent base pairs as a reaction coordinate in order to examine the bending both of free DNA and of DNA bound to the archaeal protein Sac7d. It is found that when DNA bends significantly, cations from the surrounding solution congregate on the concave side, which increases the flexibility of the DNA by screening the repulsion between phosphate backbones. The flexibility of DNA on short length scales is compared to the worm-like chain model, and the contribution of cooperativity in DNA bending to protein-DNA binding is assessed.
ContributorsSpiriti, Justin Matthew (Author) / van der Vaart, Arjan (Thesis advisor) / Chizmeshya, Andrew (Thesis advisor) / Matyushov, Dmitry (Committee member) / Fromme, Petra (Committee member) / Arizona State University (Publisher)
Created2011
154379-Thumbnail Image.png
Description
Biomolecules can easily recognize its corresponding partner and get bound to it, resulting in controlling various processes (immune system, inter or intracellular signaling) in biology and physiology. Bonding between two partners can be a result of electrostatic, hydrophobic interactions or shape complementarity. It is of great importance to study these

Biomolecules can easily recognize its corresponding partner and get bound to it, resulting in controlling various processes (immune system, inter or intracellular signaling) in biology and physiology. Bonding between two partners can be a result of electrostatic, hydrophobic interactions or shape complementarity. It is of great importance to study these kinds of biomolecular interactions to have a detailed knowledge of above mentioned physiological processes. These studies can also open avenues for other aspects of science such as drug development. Discussed in the first part of Chapter 1 are the biotin-streptavidin biomolecular interaction studies by atomic force microscopy (AFM) and surface plasmon resonance (SPR) instrument. Also, the basic working principle of AFM and SPR has been discussed.

The second part of Chapter 1 is discussed about site-specific chemical modification of peptides and proteins. Proteins have been used to generate therapeutic materials, proteins-based biomaterials. To achieve all these properties in protein there is a need for site-specific protein modification.

To be able to successfully monitor biomolecular interaction using AFM there is a need for organic linker molecule which helps one of the investigating molecules to get attached to the AFM tip. Most of the linker molecules available are capable of investigating one type of interaction at a time. Therefore, it is significant to have linker molecule which can monitor multiple interactions (same or different type) at the same time. Further, these linker molecules are modified so that biomolecular interactions can also be monitored using SPR instrument. Described in Chapter 2 are the synthesis of organic linker molecules and their use to study biomolecular interaction through AFM and SPR.

In Chapter 3, N-terminal chemical modification of peptides and proteins has been discussed. Further, modified peptides are attached to DNA thread for their translocation through the solid-state nanopore to identify them. Synthesis of various peptide-DNA conjugates and their nanopore studies have been discussed in this chapter.
ContributorsBiswas, Sudipta (Author) / Lindsay, Stuart (Thesis advisor) / Zhang, Peiming (Thesis advisor) / Redding, Kevin (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2016