Matching Items (3)
Filtering by

Clear all filters

149975-Thumbnail Image.png
Description
Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems

Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems of P management. The goal of my research was to increase our understanding of urban P cycling in the context of urban resource management through analysis of existing ecological and socio-economic data supplemented with expert interviews in order to facilitate a transition to sustainable P management. Study objectives were to: I) Quantify and map P stocks and flows in the Phoenix metropolitan area and analyze the drivers of spatial distribution and dynamics of P flows; II) examine changes in P-flow dynamics at the urban agricultural interface (UAI), and the drivers of those changes, between 1978 and 2008; III) compare the UAI's average annual P budget to the global agricultural P budget; and IV) explore opportunities for more sustainable P management in Phoenix. Results showed that Phoenix is a sink for P, and that agriculture played a primary role in the dynamics of P cycling. Internal P dynamics at the UAI shifted over the 30-year study period, with alfalfa replacing cotton as the main locus of agricultural P cycling. Results also suggest that the extent of P recycling in Phoenix is proportionally larger than comparable estimates available at the global scale due to the biophysical characteristics of the region and the proximity of various land uses. Uncertainty remains about the effectiveness of current recycling strategies and about best management strategies for the future because we do not have sufficient data to use as basis for evaluation and decision-making. By working in collaboration with practitioners, researchers can overcome some of these data limitations to develop a deeper understanding of the complexities of P dynamics and the range of options available to sustainably manage P. There is also a need to better connect P management with that of other resources, notably water and other nutrients, in order to sustainably manage cities.
ContributorsMetson, Genevieve (Author) / Childers, Daniel (Thesis advisor) / Aggarwal, Rimjhim (Thesis advisor) / Redman, Charles (Committee member) / Arizona State University (Publisher)
Created2011
Description
Phosphorus (P) is an essential resource for global food security, but global supplies are limited and demand is growing. Demand reductions are critical for achieving P sustainability, but recovery and re-use is also required. Wastewater treatment plants and livestock manures receive considerable attention for their P content, but

Phosphorus (P) is an essential resource for global food security, but global supplies are limited and demand is growing. Demand reductions are critical for achieving P sustainability, but recovery and re-use is also required. Wastewater treatment plants and livestock manures receive considerable attention for their P content, but municipal organic waste is another important source of P to address. Previous research identified the importance of diverting this waste stream from landfills for recovering P, but little has been done to identify the collection and processing mechanisms required, or address the existing economic barriers. In my research, I conducted a current state assessment of organic waste management by creating case studies in Phoenix, Arizona and New Delhi, India, and surveyed biomass energy facilities throughout the United States. With participation from waste management professionals I also envisioned an organic waste management system that contributes to sustainable P while improving environmental, social, and economic outcomes.

The results of my research indicated a number of important leverage points, including landfill fees, diversion mandates for organic waste, and renewable energy credits. Source separation of organic waste improves the range of uses, decreases processing costs, and facilitates P recovery, while creating jobs and contributing to a circular economy. Food is a significant component of the waste stream, and edible food is best diverted to food banks, while scraps are best given to livestock. Biomass energy systems produce multiple revenue streams, have high processing capacities, and concentrate P and other minerals to a greater extent than composting. Using recovered P in urban agriculture and native landscaping results in additional benefits to social-ecological systems by improving food security, reducing the urban heat island effect, sequestering carbon, and enhancing urban ecosystems.
ContributorsStoltzfus, Jared Thomas Yoder (Author) / Childers, Daniel (Thesis advisor) / Basile, George (Committee member) / Abbott, Joshua (Committee member) / Arizona State University (Publisher)
Created2016
153169-Thumbnail Image.png
Description
Climate change will result not only in changes in the mean state of climate but also on changes in variability. However, most studies of the impact of climate change on ecosystems have focused on the effect of changes in the central tendency. The broadest objective of this thesis was to

Climate change will result not only in changes in the mean state of climate but also on changes in variability. However, most studies of the impact of climate change on ecosystems have focused on the effect of changes in the central tendency. The broadest objective of this thesis was to assess the effects of increased interannual precipitation variation on ecosystem functioning in grasslands. In order to address this objective, I used a combination of field experimentation and data synthesis. Precipitation manipulations on the field experiments were carried out using an automated rainfall manipulation system developed as part of this dissertation. Aboveground net primary production responses were monitored during five years. Increased precipitation coefficient of variation decreased primary production regardless of the effect of precipitation amount. Perennial-grass productivity significantly decreased while shrub productivity increased as a result of enhanced precipitation variance. Most interesting is that the effect of precipitation variability increased through time highlighting the existence of temporal lags in ecosystem response.

Further, I investigated the effect of precipitation variation on functional diversity on the same experiment and found a positive response of diversity to increased interannual precipitation variance. Functional evenness showed a similar response resulting from large changes in plant-functional type relative abundance including decreased grass and increased shrub cover while functional richness showed non-significant response. Increased functional diversity ameliorated the direct negative effects of precipitation variation on ecosystem ANPP but did not control ecosystem stability where indirect effects through the dominant plant-functional type determined ecosystem stability.

Analyses of 80 long-term data sets, where I aggregated annual productivity and precipitation data into five-year temporal windows, showed that precipitation variance had a significant effect on aboveground net primary production that is modulated by mean precipitation. Productivity increased with precipitation variation at sites where mean annual precipitation is less than 339 mm but decreased at sites where precipitation is higher than 339 mm. Mechanisms proposed to explain patterns include: differential ANPP response to precipitation among sites, contrasting legacy effects and soil water distribution.

Finally, increased precipitation variance may impact global grasslands affecting plant-functional types in different ways that may lead to state changes, increased erosion and decreased stability that can in turn limit the services provided by these valuable ecosystems.
ContributorsGherardi Arbizu, Laureano (Author) / Sala, Osvaldo E. (Thesis advisor) / Childers, Daniel (Committee member) / Grimm, Nancy (Committee member) / Hall, Sharon (Committee member) / Wu, Jingle (Committee member) / Arizona State University (Publisher)
Created2014