Matching Items (4)
Filtering by

Clear all filters

151457-Thumbnail Image.png
Description
High electron mobility transistors (HEMTs) based on Group III-nitride heterostructures have been characterized by advanced electron microscopy methods including off-axis electron holography, nanoscale chemical analysis, and electrical measurements, as well as other techniques. The dissertation was organized primarily into three topical areas: (1) characterization of near-gate defects in electrically stressed

High electron mobility transistors (HEMTs) based on Group III-nitride heterostructures have been characterized by advanced electron microscopy methods including off-axis electron holography, nanoscale chemical analysis, and electrical measurements, as well as other techniques. The dissertation was organized primarily into three topical areas: (1) characterization of near-gate defects in electrically stressed AlGaN/GaN HEMTs, (2) microstructural and chemical analysis of the gate/buffer interface of AlN/GaN HEMTs, and (3) studies of the impact of laser-liftoff processing on AlGaN/GaN HEMTs. The electrical performance of stressed AlGaN/GaN HEMTs was measured and the devices binned accordingly. Source- and drain-side degraded, undegraded, and unstressed devices were then prepared via focused-ion-beam milling for examination. Defects in the near-gate region were identified and their correlation to electrical measurements analyzed. Increased gate leakage after electrical stressing is typically attributed to "V"-shaped defects at the gate edge. However, strong evidence was found for gate metal diffusion into the barrier layer as another contributing factor. AlN/GaN HEMTs grown on sapphire substrates were found to have high electrical performance which is attributed to the AlN barrier layer, and robust ohmic and gate contact processes. TEM analysis identified oxidation at the gate metal/AlN buffer layer interface. This thin a-oxide gate insulator was further characterized by energy-dispersive x-ray spectroscopy and energy-filtered TEM. Attributed to this previously unidentified layer, high reverse gate bias up to −30 V was demonstrated and drain-induced gate leakage was suppressed to values of less than 10−6 A/mm. In addition, extrinsic gm and ft * LG were improved to the highest reported values for AlN/GaN HEMTs fabricated on sapphire substrates. Laser-liftoff (LLO) processing was used to separate the active layers from sapphire substrates for several GaN-based HEMT devices, including AlGaN/GaN and InAlN/GaN heterostructures. Warpage of the LLO samples resulted from relaxation of the as-grown strain and strain arising from dielectric and metal depositions, and this strain was quantified by both Newton's rings and Raman spectroscopy methods. TEM analysis demonstrated that the LLO processing produced no detrimental effects on the quality of the epitaxial layers. TEM micrographs showed no evidence of either damage to the ~2 μm GaN epilayer generated threading defects.
ContributorsJohnson, Michael R. (Author) / Mccartney, Martha R (Thesis advisor) / Smith, David J. (Committee member) / Goodnick, Stephen (Committee member) / Shumway, John (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2012
156445-Thumbnail Image.png
Description
The two-dimensional electron gas (2DEG) at SrTiO3-based oxide interfaces has been extensively studied recently for its high carrier density, high electron mobility, superconducting, ferromagnetic, ferrroelectric and magnetoresistance properties, with possible application for all-oxide devices. Understanding the mechanisms behind the 2DEG formation and factors affecting its properties is the primary objective

The two-dimensional electron gas (2DEG) at SrTiO3-based oxide interfaces has been extensively studied recently for its high carrier density, high electron mobility, superconducting, ferromagnetic, ferrroelectric and magnetoresistance properties, with possible application for all-oxide devices. Understanding the mechanisms behind the 2DEG formation and factors affecting its properties is the primary objective of this dissertation.

Advanced electron microscopy techniques, including aberration-corrected electron microscopy and electron energy-loss spectroscopy (EELS) with energy-loss near-edge structure (ELNES) analysis, were used to characterize the interfaces. Image and spectrum data-processing algorithms, including subpixel atomic position measurement, and novel outlier detection by oversampling, subspace division based EELS background removal and bias-free endmember extraction algorithms for hyperspectral unmixing and mapping were heavily used. Results were compared with density functional theory (DFT) calculations for theoretical explanation.

For the γ-Al2O3/SrTiO3 system, negative-Cs imaging confirmed the formation of crystalline γ-Al2O3. ELNES hyperspectral unmixing combined with DFT calculations revealed that oxygen vacancies, rather than polar discontinuity, were the key to the 2DEG formation. The critical thickness can be explained by shift of the Fermi level due to Ti out diffusion from the substrate to the film.

At the LaTiO3/SrTiO3 interface, aberration-corrected imaging showed crystallinity deterioration in LaTiO3 films a few unit cells away from the interface. ELNES showed that oxygen annealing did not alter the crystallinity but converted Ti3+ near the interface into Ti4+, which explained disappearance of the conductivity.

At the EuO/SrTiO3 interface, both high-resolution imaging and ELNES confirmed EuO formation. ELNES hyperspectral unmixing showed a Ti3+ layer confined to within several unit cells of the interface on the SrTiO3 side, confirming the presence of oxygen vacancies.

At the BaTiO3/SrTiO3 interface, spontaneous polarization and local lattice parameters were measured directly in each unit cell column and compared with oxidation state mapping using ELNES with unit-cell resolution. The unusually large polarization near the interface and the polarization gradient were explained by oxygen vacancies and the piezoelectric effect due to epitaxial strain and strain gradient from relaxation.
ContributorsLu, Sirong (Author) / Smith, David J. (Thesis advisor) / McCartney, Martha R. (Thesis advisor) / Chizmeshya, Andrew (Committee member) / Crozier, Peter A. (Committee member) / Arizona State University (Publisher)
Created2018
155162-Thumbnail Image.png
Description
Gallium Nitride (GaN) based microelectronics technology is a fast growing and most exciting semiconductor technology in the fields of high power and high frequency electronics. Excellent electrical properties of GaN such as high carrier concentration and high carrier motility makes GaN based high electron mobility transistors (HEMTs) a preferred choice

Gallium Nitride (GaN) based microelectronics technology is a fast growing and most exciting semiconductor technology in the fields of high power and high frequency electronics. Excellent electrical properties of GaN such as high carrier concentration and high carrier motility makes GaN based high electron mobility transistors (HEMTs) a preferred choice for RF applications. However, a very high temperature in the active region of the GaN HEMT leads to a significant degradation of the device performance by effecting carrier mobility and concentration. Thus, thermal management in GaN HEMT in an effective manner is key to this technology to reach its full potential.

In this thesis, an electro-thermal model of an AlGaN/GaN HEMT on a SiC substrate is simulated using Silvaco (Atlas) TCAD tools. Output characteristics, current density and heat flow at the GaN-SiC interface are key areas of analysis in this work. The electrical characteristics show a sharp drop in drain currents for higher drain voltages. Temperature profile across the device is observed. At the interface of GaN-SiC, there is a sharp drop in temperature indicating a thermal resistance at this interface. Adding to the existing heat in the device, this difference heat is reflected back into the device, further increasing the temperatures in the active region. Structural changes such as GaN micropits, were introduced at the GaN-SiC interface along the length of the device, to make the heat flow smooth rather than discontinuous. With changing dimensions of these micropits, various combinations were tried to reduce the temperature and enhance the device performance. These GaN micropits gave effective results by reducing heat in active region, by spreading out the heat on to the sides of the device rather than just concentrating right below the hot spot. It also helped by allowing a smooth flow of heat at the GaN-SiC interface. There was an increased peak current density in the active region of the device contributing to improved electrical characteristics. In the end, importance of thermal management in these high temperature devices is discussed along with future prospects and a conclusion of this thesis.
ContributorsSuri, Suraj (Author) / Zhao, Yuji (Thesis advisor) / Vasileska, Dragika (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2016
156425-Thumbnail Image.png
Description
With the high demand for faster and smaller wireless communication devices, manufacturers have been pushed to explore new materials for smaller and faster transistors. One promising class of transistors is high electron mobility transistors (HEMT). AlGaAs/GaAs HEMTs have been shown to perform well at high power and high frequencies.

With the high demand for faster and smaller wireless communication devices, manufacturers have been pushed to explore new materials for smaller and faster transistors. One promising class of transistors is high electron mobility transistors (HEMT). AlGaAs/GaAs HEMTs have been shown to perform well at high power and high frequencies. However, AlGaN/GaN HEMTs have been gaining more attention recently due to their comparatively higher power densities and better high frequency performance. Nevertheless, these devices have experienced truncated lifetimes. It is assumed that reducing defect densities in these materials will enable a more direct study of the failure mechanisms in these devices. In this work we present studies done to reduce interfacial oxygen at N-polar GaN/GaN interfaces, growth conditions for InAlN barrier layer, and microanalysis of a partial InAlN-based HEMT. Additionally, the depth of oxidation of an InAlN layer on a gate-less InAlN/GaN metal oxide semiconductor HEMT (MOSHEMT) was investigated. Measurements of electric fields in AlGaN/GaN HEMTs with and without field plates are also presented.
ContributorsMcConkie, Thomas O. (Author) / Smith, David J. (Thesis advisor) / McCartney, Martha (Committee member) / Ponce, Fernando A. (Committee member) / Saraniti, Marco (Committee member) / Arizona State University (Publisher)
Created2018