Matching Items (10)
Filtering by

Clear all filters

149873-Thumbnail Image.png
Description
Passive cooling designs & technologies offer great promise to lower energy use in buildings. Though the working principles of these designs and technologies are well understood, simplified tools to quantitatively evaluate their performance are lacking. Cooling by night ventilation, which is the topic of this research, is one of the

Passive cooling designs & technologies offer great promise to lower energy use in buildings. Though the working principles of these designs and technologies are well understood, simplified tools to quantitatively evaluate their performance are lacking. Cooling by night ventilation, which is the topic of this research, is one of the well known passive cooling technologies. The building's thermal mass can be cooled at night by ventilating the inside of the space with the relatively lower outdoor air temperatures, thereby maintaining lower indoor temperatures during the warmer daytime period. Numerous studies, both experimental and theoretical, have been performed and have shown the effectiveness of the method to significantly reduce air conditioning loads or improve comfort levels in those climates where the night time ambient air temperature drops below that of the indoor air. The impact of widespread adoption of night ventilation cooling can be substantial, given the large fraction of energy consumed by air conditioning of buildings (about 12-13% of the total electricity use in U.S. buildings). Night ventilation is relatively easy to implement with minimal design changes to existing buildings. Contemporary mathematical models to evaluate the performance of night ventilation are embedded in detailed whole building simulation tools which require a certain amount of expertise and is a time consuming approach. This research proposes a methodology incorporating two models, Heat Transfer model and Thermal Network model, to evaluate the effectiveness of night ventilation. This methodology is easier to use and the run time to evaluate the results is faster. Both these models are approximations of thermal coupling between thermal mass and night ventilation in buildings. These models are modifications of existing approaches meant to model dynamic thermal response in buildings subject to natural ventilation. Effectiveness of night ventilation was quantified by a parameter called the Discomfort Reduction Factor (DRF) which is the index of reduction of occupant discomfort levels during the day time from night ventilation. Daily and Monthly DRFs are calculated for two climate zones and three building heat capacities. It is verified that night ventilation is effective in seasons and regions when day temperatures are between 30 oC and 36 oC and night temperatures are below 20 oC. The accuracy of these models may be lower than using a detailed simulation program but the loss in accuracy in using these tools more than compensates for the insights provided and better transparency in the analysis approach and results obtained.
ContributorsEndurthy, Akhilesh Reddy (Author) / Reddy, T Agami (Thesis advisor) / Phelan, Patrick (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2011
149905-Thumbnail Image.png
Description
Many school facility-planning theories have proposed an integrated role for schools within their surrounding neighborhood, advocating analogous approaches to creating "community schools" that involve social and community services at school sites that support both students and local residents. Despite the popularity of this concept in the education community, the idea

Many school facility-planning theories have proposed an integrated role for schools within their surrounding neighborhood, advocating analogous approaches to creating "community schools" that involve social and community services at school sites that support both students and local residents. Despite the popularity of this concept in the education community, the idea of schools as community centers has not entered the mainstream of urban planning thought or practice. As the community schools movement continues to grow, planners should be engaged to support and leverage community school developments using their unique role as mediators of public and private interests. Furthermore, planners tend to have a broad perspective of communities that can facilitate synergistic partnerships and development patterns beyond the immediate school site. The aim of this research was to reframe the existing literature on community schools into a unified School-Oriented Development (SOD) neighborhood planning paradigm that 1) proposes a typology based on the relationships between schools and their surrounding communities, and 2) suggests urban form guidelines that will support these relationships in a child-friendly environment. These outcomes were achieved through the creation of a prototype SOD SmartCode Module that incorporates an SOD typology.
ContributorsReid, Carolyn (Author) / Talen, Emily (Thesis advisor) / Dornfeld, Leslie (Committee member) / Stein, Jay (Committee member) / Arizona State University (Publisher)
Created2011
Description
Buildings in the United States, account for over 68 percent of electricity consumed, 39 percent of total energy use, and 38 percent of the carbon dioxide emissions. By the year 2035, about 75% of the U.S. building sector will be either new or renovated. The energy efficiency requirements of current

Buildings in the United States, account for over 68 percent of electricity consumed, 39 percent of total energy use, and 38 percent of the carbon dioxide emissions. By the year 2035, about 75% of the U.S. building sector will be either new or renovated. The energy efficiency requirements of current building codes would have a significant impact on future energy use, hence, one of the most widely accepted solutions to slowing the growth rate of GHG emissions and then reversing it involves a stringent adoption of building energy codes. A large number of building energy codes exist and a large number of studies which state the energy savings possible through code compliance. However, most codes are difficult to comprehend and require an extensive understanding of the code, the compliance paths, all mandatory and prescriptive requirements as well as the strategy to convert the same to energy model inputs. This paper provides a simplified solution for the entire process by providing an easy to use interface for code compliance and energy simulation through a spreadsheet based tool, the ECCO or the Energy Code COmpliance Tool. This tool provides a platform for a more detailed analysis of building codes as applicable to each and every individual building in each climate zone. It also facilitates quick building energy simulation to determine energy savings achieved through code compliance. This process is highly beneficial not only for code compliance, but also for identifying parameters which can be improved for energy efficiency. Code compliance is simplified through a series of parametric runs which generates the minimally compliant baseline building and 30% beyond code building. This tool is seen as an effective solution for architects and engineers for an initial level analysis as well as for jurisdictions as a front-end diagnostic check for code compliance.  
ContributorsGoel, Supriya (Author) / Bryan, Harvey J. (Thesis advisor) / Reddy, T. Agami (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2011
151437-Thumbnail Image.png
Description
Dwindling energy resources and associated environmental costs have resulted in a serious need to design and construct energy efficient buildings. One of the strategies to develop energy efficient structural materials is through the incorporation of phase change materials (PCM) in the host matrix. This research work presents details of a

Dwindling energy resources and associated environmental costs have resulted in a serious need to design and construct energy efficient buildings. One of the strategies to develop energy efficient structural materials is through the incorporation of phase change materials (PCM) in the host matrix. This research work presents details of a finite element-based framework that is used to study the thermal performance of structural precast concrete wall elements with and without a layer of phase change material. The simulation platform developed can be implemented for a wide variety of input parameters. In this study, two different locations in the continental United States, representing different ambient temperature conditions (corresponding to hot, cold and typical days of the year) are studied. Two different types of concrete - normal weight and lightweight, different PCM types, gypsum wallboard's with varying PCM percentages and different PCM layer thicknesses are also considered with an aim of understanding the energy flow across the wall member. Effect of changing PCM location and prolonged thermal loading are also studied. The temperature of the inside face of the wall and energy flow through the inside face of the wall, which determines the indoor HVAC energy consumption are used as the defining parameters. An ad-hoc optimization scheme is also implemented where the PCM thickness is fixed but its location and properties are varied. Numerical results show that energy savings are possible with small changes in baseline values, facilitating appropriate material design for desired characteristics.
ContributorsHembade, Lavannya Babanrao (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Thesis advisor) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2012
154682-Thumbnail Image.png
Description
Schools all around the country are improving the performance of their buildings by adopting high performance design principles. Higher levels of energy efficiency can pave the way for K-12 Schools to achieve net zero energy (NZE) conditions, a state where the energy generated by on-site renewable sources are sufficient to

Schools all around the country are improving the performance of their buildings by adopting high performance design principles. Higher levels of energy efficiency can pave the way for K-12 Schools to achieve net zero energy (NZE) conditions, a state where the energy generated by on-site renewable sources are sufficient to meet the cumulative annual energy demands of the facility. A key capability for the proliferation of Net Zero Energy Buildings (NZEB) is the need for a design methodology that identifies the optimum mix of energy efficient design features to be incorporated into the building. The design methodology should take into account the interaction effects of various energy efficiency measures as well as their associated costs so that life cycle cost can be minimized for the entire life span of the building.

This research aims at developing such a methodology for generating cost effective net zero energy solutions for school buildings. The Department of Energy (DOE) prototype primary school, meant to serve as the starting baseline, was modeled in the building energy simulation software eQUEST and made compliant with the requirement of ASHRAE 90.1-2007. Commonly used efficiency measures, for which credible initial cost and maintenance data were available, were selected as the parametric design set. An initial sensitivity analysis was conducted by using the Morris Method to rank the efficiency measures in terms of their importance and interaction strengths. A sequential search technique was adopted to search the solution space and identify combinations that lie near the Pareto-optimal front; this allowed various minimum cost design solutions to be identified corresponding to different energy savings levels.

Based on the results of this study, it was found that the cost optimal combination of measures over the 30 year analysis span resulted in an annual energy cost reduction of 47%, while net zero site energy conditions were achieved by the addition of a 435 kW photovoltaic generation system that covered 73% of the roof area. The simple payback period for the additional technology required to achieve NZE conditions was calculated to be 26.3 years and carried a 37.4% premium over the initial building construction cost. The study identifies future work in how to automate this computationally conservative search technique so that it can provide practical feedback to the building designer during all stages of the design process.
ContributorsIslam, Mohammad Moshfiqul (Author) / Reddy, T. Agami (Thesis advisor) / Bryan, Harvey J. (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2016
155081-Thumbnail Image.png
Description
ABSTRACT

A large fraction of the total energy consumption in the world comes from heating and cooling of buildings. Improving the energy efficiency of buildings to reduce the needs of seasonal heating and cooling is one of the major challenges in sustainable development. In general, the energy efficiency depends

ABSTRACT

A large fraction of the total energy consumption in the world comes from heating and cooling of buildings. Improving the energy efficiency of buildings to reduce the needs of seasonal heating and cooling is one of the major challenges in sustainable development. In general, the energy efficiency depends on the geometry and material of the buildings. To explore a framework for accurately assessing this dependence, detailed 3-D thermofluid simulations are performed by systematically sweeping the parameter space spanned by four parameters: the size of building, thickness and material of wall, and fractional size of window. The simulations incorporate realistic boundary conditions of diurnally-varying temperatures from observation, and the effect of fluid flow with explicit thermal convection inside the building. The outcome of the numerical simulations is synthesized into a simple map of an index of energy efficiency in the parameter space which can be used by stakeholders to quick look-up the energy efficiency of a proposed design of a building before its construction. Although this study only considers a special prototype of buildings, the framework developed in this work can potentially be used for a wide range of buildings and applications.
ContributorsJain, Gaurav (Author) / Huang, Huei-Ping (Thesis advisor) / Ren, Yi (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2016
154060-Thumbnail Image.png
Description
This research is aimed at studying the impact of building design parameters in terms of their importance and mutual interaction, and how these aspects vary across climates and HVAC system types. A methodology is proposed for such a study, by examining the feasibility and use of two different statistical methods

This research is aimed at studying the impact of building design parameters in terms of their importance and mutual interaction, and how these aspects vary across climates and HVAC system types. A methodology is proposed for such a study, by examining the feasibility and use of two different statistical methods to derive all realistic ‘near-optimum’ solutions which might be lost using a simple optimization technique.

DOE prototype medium office building compliant with ASHRAE 90.1-2010 was selected for the analysis and four different HVAC systems in three US climates were simulated.

The interaction between building design parameters related to envelope characteristics and geometry (total of seven variables) has been studied using two different statistical methods, namely the ‘Morris method’ and ‘Predictive Learning via Rule Ensembles’.

Subsequently, a simple graphical tool based on sensitivity analysis has been developed and demonstrated to present the results from parametric simulations. This tool would be useful to better inform design decisions since it allows imposition of constraints on various parameters and visualize their interaction with other parameters.

It was observed that the Radiant system performed best in all three climates, followed by displacement ventilation system. However, it should be noted that this study did not deal with performance optimization of HVAC systems while there have been several studies which concluded that a VAV system with better controls can perform better than some of the newer HVAC technologies. In terms of building design parameters, it was observed that ‘Ceiling Height’, ‘Window-Wall Ratio’ and ‘Window Properties’ showed highest importance as well as interaction as compared to other parameters considered in this study, for all HVAC systems and climates.

Based on the results of this study, it is suggested to extend such analysis using statistical methods such as the ‘Morris method’, which require much fewer simulations to categorize parameters based on their importance and interaction strength. Usage of statistical methods like ‘Rule Ensembles’ or other simple visual tools to analyze simulation results for all combinations of parameters that show interaction would allow designers to make informed and superior design decisions while benefiting from large reduction in computational time.
ContributorsDidwania, Srijan Kumar (Author) / Reddy, T. Agami (Thesis advisor) / Addison, Marlin S. (Thesis advisor) / Bryan, Harvey J. (Committee member) / Arizona State University (Publisher)
Created2015
152777-Thumbnail Image.png
Description
The objective of this thesis is to investigate the various types of energy end-uses to be expected in future high efficiency single family residences. For this purpose, this study has analyzed monitored data from 14 houses in the 2013 Solar Decathlon competition, and segregates the energy consumption patterns in various

The objective of this thesis is to investigate the various types of energy end-uses to be expected in future high efficiency single family residences. For this purpose, this study has analyzed monitored data from 14 houses in the 2013 Solar Decathlon competition, and segregates the energy consumption patterns in various residential end-uses (such as lights, refrigerators, washing machines, ...). The analysis was not straight-forward since these homes were operated according to schedules previously determined by the contest rules. The analysis approach allowed the isolation of the comfort energy use by the Heating, Venting and Cooling (HVAC) systems. HVAC are the biggest contributors to energy consumption during operation of a building, and therefore are a prime concern for energy performance during the building design and the operation. Both steady state and dynamic models of comfort energy use which take into account variations in indoor and outdoor temperatures, solar radiation and thermal mass of the building were explicitly considered. Steady State Inverse Models are frequently used for thermal analysis to evaluate HVAC energy performance. These are fast, accurate, offer great flexibility for mathematical modifications and can be applied to a variety of buildings. The results are presented as a horizontal study that compares energy consumption across homes to arrive at a generic rather than unique model - to be used in future discussions in the context of ultra efficient homes. It is suggested that similar analyses of the energy-use data that compare the performance of variety of ultra efficient technologies be conducted to provide more accurate indications of the consumption by end use for future single family residences. These can be used alongside the Residential Energy Consumption Survey (RECS) and the Leading Indicator for Remodeling Activity (LIRA) indices to assist in planning and policy making related to residential energy sector.
ContributorsGarkhail, Rahul (Author) / Reddy, T Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2014
153723-Thumbnail Image.png
Description
Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of

Improving the conditions of schools in many parts of the world is gradually acquiring importance. The Green School movement is an integral part of this effort since it aims at improving indoor environmental conditions. This would in turn, enhance student- learning while minimizing adverse environmental impact through energy efficiency of comfort-related HVAC and lighting systems. This research, which is a part of a larger research project, aims at evaluating different school building designs in Albania in terms of energy use and indoor thermal comfort, and identify energy efficient options of existing schools. We start by identifying three different climate zones in Albania; Coastal (Durres), Hill/Pre-mountainous (Tirana), mountainous (Korca). Next, two prototypical school building designs are identified from the existing stock. Numerous scenarios are then identified for analysis which consists of combinations of climate zone, building type, building orientation, building upgrade levels, presence of renewable energy systems (solar photovoltaic and solar water heater). The existing building layouts, initially outlined in CAD software and then imported into a detailed building energy software program (eQuest) to perform annual simulations for all scenarios. The research also predicted indoor thermal comfort conditions of the various scenarios on the premise that windows could be opened to provide natural ventilation cooling when appropriate. This study also estimated the energy generated from solar photovoltaic systems and solar water heater systems when placed on the available roof area to determine the extent to which they are able to meet the required electric loads (plug and lights) and building heating loads respectively.

The results showed that there is adequate indoor comfort without the need for mechanical cooling for the three climate zones, and that only heating is needed during the winter months.
ContributorsDalvi, Ambalika Rajendra (Author) / Reddy, Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2015
153692-Thumbnail Image.png
Description
Energy performance and efficiency plays of major role in the operations of K-12 schools, as it is a significant expense and a source of budgetary pressure upon schools. Energy performance is tied to the physical infrastructure of schools, as well as the operational and behavioral patterns they accommodate. Little documentation

Energy performance and efficiency plays of major role in the operations of K-12 schools, as it is a significant expense and a source of budgetary pressure upon schools. Energy performance is tied to the physical infrastructure of schools, as well as the operational and behavioral patterns they accommodate. Little documentation exists within the existing literature on the measured post-occupancy performance of schools once they have begun measuring and tracking their energy performance. Further, little is known about the patterns of change over time in regard to energy performance and whether there is differentiation in these patterns between school districts.

This paper examines the annual Energy Use Intensity (EUI) of 28 different K-12 schools within the Phoenix Metropolitan Region of Arizona over the span of five years and presents an analysis of changes in energy performance resulting from the measurement of energy use in K-12 schools. This paper also analyzes the patterns of change in energy use over time and provides a comparison of these patterns by school district.

An analysis of the energy performance data for the selected schools revealed a significant positive impact on the ability for schools to improve their energy performance through ongoing performance measurement. However, while schools tend to be able to make energy improvements through the implementation of energy measurement and performance tracking, deviation may exist in their ability to maintain ongoing energy performance over time. The results suggest that implementation of ongoing measurement is likely to produce positive impacts on the energy performance of schools, however further research is recommended to enhance and refine these results.
ContributorsThurston, Anna (Author) / Sullivan, Kenneth (Thesis advisor) / Okamura, Patrick (Committee member) / Slife, Curtis (Committee member) / Arizona State University (Publisher)
Created2015