Matching Items (3)
149775-Thumbnail Image.png
Description
The current practice of municipal stormwater management in the United States has failed to effectively reduce the amount of pollutants discharged into surface waters. Water impairment as a result of polluted stormwater runoff from urbanized areas remains a significant concern despite federally mandated efforts to reduce the impact of these

The current practice of municipal stormwater management in the United States has failed to effectively reduce the amount of pollutants discharged into surface waters. Water impairment as a result of polluted stormwater runoff from urbanized areas remains a significant concern despite federally mandated efforts to reduce the impact of these discharges. To begin addressing these shortfalls the Environmental Protection Agency contracted the National Research Council to investigate the extent of the stormwater program and to identify areas that require improvement in order to more effectively implement the program. Their findings indicated widespread, foundational flaws with the stormwater regulatory structure and proposed new permitting guidelines. The purpose of this study was to explore the specific shortcomings of stormwater management in the Maricopa County region and to suggest the establishment of a regional authority. Doing so would require an alternative permitting regime to replace the current approach of population based municipal permitting with a permit that considered the entire urbanized region. The organizational structure, legality concerns and intergovernmental partnerships needed to properly establish such a regional authority were part of this study. The effect of this approach suggested a more effective, efficient and economical model of municipal stormwater management that better addressed certain Integrated Urban Stormwater Management strategies and began to address the program weaknesses identified by the National Research Council.
ContributorsNymeyer, Matt (Author) / Olson, Larry W. (Thesis advisor) / Edwards, David A. (Committee member) / Hild, Nicholas R (Committee member) / Arizona State University (Publisher)
Created2011
155051-Thumbnail Image.png
Description
Cities can be sources of nitrate to downstream ecosystems resulting in eutrophication, harmful algal blooms, and hypoxia that can have negative impacts on economies and human health. One potential solution to this problem is to increase nitrate removal in cities by providing locations where denitrification¬— a microbial process in which

Cities can be sources of nitrate to downstream ecosystems resulting in eutrophication, harmful algal blooms, and hypoxia that can have negative impacts on economies and human health. One potential solution to this problem is to increase nitrate removal in cities by providing locations where denitrification¬— a microbial process in which nitrate is reduced to N2 gas permanently removing nitrate from systems— can occur. Accidental urban wetlands– wetlands that results from human activities, but are not designed or managed for any specific outcome¬– are one such feature in the urban landscape that could help mitigate nitrate pollution through denitrification.

The overarching question of this dissertation is: how do hydrology, soil conditions, and plant patches affect patterns of denitrification in accidental urban wetlands? To answer this question, I took a three-pronged approach using a combination of field and greenhouse studies. First, I examined drivers of broad patterns of denitrification in accidental urban wetlands. Second, I used a field study to test if plant traits influence denitrification indirectly by modifying soil resources. Finally, I examined how species richness and interactions between species influence nitrate retention and patterns of denitrification using both a field study and greenhouse experiment.

Hydroperiod of accidental urban wetlands mediated patterns of denitrification in response to monsoon floods and plant patches. Specifically, ephemeral wetlands had patterns of denitrification that were largely unexplained by monsoon floods or plant patches, which are common drivers of patterns of denitrification in non-urban wetlands. Several plant traits including belowground biomass, above- and belowground tissue chemistry and rooting depth influenced denitrification indirectly by changing soil organic matter or soil nitrate. However, several other plant traits also had significant direct relationships with denitrification, (i.e. not through the hypothesized indirect relationships through soil organic matter or soil nitrate). This means these plant traits were affecting another aspect of soil conditions not included in the analysis, highlighting the need to improve our understanding of how plant traits influence denitrification. Finally, increasing species richness did not increase nitrate retention or denitrification, but rather individual species had the greatest effects on nitrate retention and denitrification.
ContributorsSuchy, Amanda Klara (Author) / Childers, Daniel L. (Thesis advisor) / Stromberg, Juliet C. (Thesis advisor) / Grimm, Nancy (Committee member) / Hall, Sharon (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2016
157746-Thumbnail Image.png
Description
Imagine you live in a place without any storm water or wastewater systems!

Wastewater and storm water systems are two of the most crucial systems for urban infrastructure. Water resources have become more limited and expensive in arid and semi-arid regions. According to the fourth World Water Development Report, over

Imagine you live in a place without any storm water or wastewater systems!

Wastewater and storm water systems are two of the most crucial systems for urban infrastructure. Water resources have become more limited and expensive in arid and semi-arid regions. According to the fourth World Water Development Report, over 80% of global wastewater is released into the environment without adequate treatment. Wastewater collection and treatment systems in the Kingdom of Saudi Arabia (KSA) covers about 49% of urban areas; about 25% of treated wastewater is used for landscape and crop irrigation (Ministry of Environment Water and Agriculture [MEWA], 2017). According to Guizani (2016), during each event of flooding, there are fatalities. In 2009, the most deadly flood occurred in Jeddah, KSA within more than 160 lives lost. As a consequence, KSA has set a goal to provide 100% sewage collection and treatment services to every city with a population above 5000 by 2025, where all treated wastewater will be used.

This research explores several optimization models of planning and designing collection systems, such as regional wastewater and stormwater systems, in order to understand and overcome major performance-related disadvantages and high capital costs. The first model (M-1) was developed for planning regional wastewater system, considering minimum costs of location, type, and size sewer network and wastewater treatment plants (WWTPs). The second model (M-2) was developed for designing a regional wastewater system, considering minimum hydraulic design costs, such as pump stations, commercial diameters, excavation costs, and WWTPs. Both models were applied to the Jizan region, KSA.

The third model (M-3) was developed to solve layout and pipe design for storm water systems simultaneously. This model was applied to four different case scenarios, using two approaches for commercial diameters. The fourth model (M-4) was developed to solve the optimum pipe design of a storm sewer system for given layouts. However, M-4 was applied to a storm sewer network published in the literature.

M-1, M-2, and M-3 were developed in the general algebraic modeling system (GAMS) program, which was formulated as a mixed integer nonlinear programming (MINLP) solver, while M-4 was formulated as a nonlinear programming (NLP) procedure.
ContributorsAlfaisal, Faisal M (Author) / Mays, Larry W. (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2019