Matching Items (2)
149744-Thumbnail Image.png
Description
The video game graphics pipeline has traditionally rendered the scene using a polygonal approach. Advances in modern graphics hardware now allow the rendering of parametric methods. This thesis explores various smooth surface rendering methods that can be integrated into the video game graphics engine. Moving over to parametric or smooth

The video game graphics pipeline has traditionally rendered the scene using a polygonal approach. Advances in modern graphics hardware now allow the rendering of parametric methods. This thesis explores various smooth surface rendering methods that can be integrated into the video game graphics engine. Moving over to parametric or smooth surfaces from the polygonal domain has its share of issues and there is an inherent need to address various rendering bottlenecks that could hamper such a move. The game engine needs to choose an appropriate method based on in-game characteristics of the objects; character and animated objects need more sophisticated methods whereas static objects could use simpler techniques. Scaling the polygon count over various hardware platforms becomes an important factor. Much control is needed over the tessellation levels, either imposed by the hardware limitations or by the application, to be able to adaptively render the mesh without significant loss in performance. This thesis explores several methods that would help game engine developers in making correct design choices by optimally balancing the trade-offs while rendering the scene using smooth surfaces. It proposes a novel technique for adaptive tessellation of triangular meshes that vastly improves speed and tessellation count. It develops an approximate method for rendering Loop subdivision surfaces on tessellation enabled hardware. A taxonomy and evaluation of the methods is provided and a unified rendering system that provides automatic level of detail by switching between the methods is proposed.
ContributorsAmresh, Ashish (Author) / Farin, Gerlad (Thesis advisor) / Razdan, Anshuman (Thesis advisor) / Wonka, Peter (Committee member) / Hansford, Dianne (Committee member) / Arizona State University (Publisher)
Created2011
161759-Thumbnail Image.png
Description
This work focuses on the analysis and design of large-scale millimeter-wave andterahertz (mmWave/THz) beamforming apertures (e.g., reconfigurable reflective surfaces– RRSs). As such, the small wavelengths and ample bandwidths of these frequencies enable the development of high-spatial-resolution imaging and high-throughput wireless communication systems that leverage electrically large apertures to form high-gain steerable beams. For the rigorous

This work focuses on the analysis and design of large-scale millimeter-wave andterahertz (mmWave/THz) beamforming apertures (e.g., reconfigurable reflective surfaces– RRSs). As such, the small wavelengths and ample bandwidths of these frequencies enable the development of high-spatial-resolution imaging and high-throughput wireless communication systems that leverage electrically large apertures to form high-gain steerable beams. For the rigorous evaluation of these systems’ performance in realistic application scenarios, full-wave simulations are needed to capture all the exhibited electromagnetic phenomena. However, the small wavelengths of mmWave/THz bands lead to enormous meshes in conventional full-wave simulators. Thus, a novel numerical decomposition technique is presented, which decomposes the full-wave models in smaller domains with less meshed elements, enabling their computationally efficient analysis. Thereafter, this method is leveraged to study a novel radar configuration that employs a rotating linear antenna with beam steering capabilities to form 3D images. This imaging process requires fewer elements to carry out high-spatial-resolution imaging compared to traditional 2D phased arrays, constituting a perfect candidate in low-profile, low-cost applications. Afterward, a high-yield nanofabrication technique for mmWave/THz graphene switches is presented. The measured graphene sheet impedances are incorporated into equivalent circuit models of coplanar switches to identify the optimum mmWave/THz switch topology that would enable the development of large-scale RRSs.ii Thereon, the process of integrating the optimized graphene switches into largescale mmWave/THz RRSs is detailed. The resulting RRSs enable dynamic beam steering achieving 4-bits of phase quantization –for the first time in the known literature– eliminating the parasitic lobes and increasing the aperture efficiency. Furthermore, the devised multi-bit configurations use a single switch-per-bit topology retaining low system complexity and RF losses. Finally, single-bit RRSs are modified to offer single-lobe patterns by employing a surface randomization technique. This approach allows for the use of low-complexity single-bit configurations to suppress the undesired quantization lobes without residing to the use of sophisticated multi-bit topologies. The presented concepts pave the road toward the implementation and proliferation of large-scale reconfigurable beamforming apertures that can serve both as mmWave/THz imagers and as relays or base stations in future wireless communication applications.
ContributorsTheofanopoulos, Panagiotis (Author) / Trichopoulos, Georgios (Thesis advisor) / Balanis, Constantine (Committee member) / Aberle, James (Committee member) / Bliss, Dan (Committee member) / Groppi, Christopher (Committee member) / Arizona State University (Publisher)
Created2021