Matching Items (2)
157261-Thumbnail Image.png
Description
Diophantine arithmetic is one of the oldest branches of mathematics, the search

for integer or rational solutions of algebraic equations. Pythagorean triangles are

an early instance. Diophantus of Alexandria wrote the first related treatise in the

fourth century; it was an area extensively studied by the great mathematicians of the seventeenth

Diophantine arithmetic is one of the oldest branches of mathematics, the search

for integer or rational solutions of algebraic equations. Pythagorean triangles are

an early instance. Diophantus of Alexandria wrote the first related treatise in the

fourth century; it was an area extensively studied by the great mathematicians of the seventeenth century, including Euler and Fermat.

The modern approach is to treat the equations as defining geometric objects, curves, surfaces, etc. The theory of elliptic curves (or curves of genus 1, which are much used in modern cryptography) was developed extensively in the twentieth century, and has had great application to Diophantine equations. This theory is used in application to the problems studied in this thesis. This thesis studies some curves of high genus, and possible solutions in both rationals and in algebraic number fields, generalizes some old results and gives answers to some open problems in the literature. The methods involve known techniques together with some ingenious tricks. For example, the equations $y^2=x^6+k$, $k=-39,\,-47$, the two previously unsolved cases for $|k|<50$, are solved using algebraic number theory and the ‘elliptic Chabauty’ method. The thesis also studies the genus three quartic curves $F(x^2,y^2,z^2)=0$ where F is a homogeneous quadratic form, and extend old results of Cassels, and Bremner. It is a very delicate matter to find such curves that have no rational points, yet which do have points in odd-degree extension fields of the rationals.

The principal results of the thesis are related to surfaces where the theory is much less well known. In particular, the thesis studies some specific families of surfaces, and give a negative answer to a question in the literature regarding representation of integers n in the form $n=(x+y+z+w)(1/x+1/y+1/z+1/w).$ Further, an example, the first such known, of a quartic surface $x^4+7y^4=14z^4+18w^4$ is given with remarkable properties: it is everywhere locally solvable, yet has no non-zero rational point, despite having a point in (non-trivial) odd-degree extension fields of the rationals. The ideas here involve manipulation of the Hilbert symbol, together with the theory of elliptic curves.
ContributorsNguyen, Xuan Tho (Author) / Bremner, Andrew (Thesis advisor) / Childress, Nancy (Committee member) / Jones, John (Committee member) / Quigg, John (Committee member) / Fishel, Susanna (Committee member) / Arizona State University (Publisher)
Created2019
149583-Thumbnail Image.png
Description
In Iwasawa theory, one studies how an arithmetic or geometric object grows as its field of definition varies over certain sequences of number fields. For example, let $F/\mathbb{Q}$ be a finite extension of fields, and let $E:y^2 = x^3 + Ax + B$ with $A,B \in F$ be an elliptic

In Iwasawa theory, one studies how an arithmetic or geometric object grows as its field of definition varies over certain sequences of number fields. For example, let $F/\mathbb{Q}$ be a finite extension of fields, and let $E:y^2 = x^3 + Ax + B$ with $A,B \in F$ be an elliptic curve. If $F = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots F_\infty = \bigcup_{i=0}^\infty F_i$, one may be interested in properties like the ranks and torsion subgroups of the increasing family of curves $E(F_0) \subseteq E(F_1) \subseteq \cdots \subseteq E(F_\infty)$. The main technique for studying this sequence of curves when $\Gal(F_\infty/F)$ has a $p$-adic analytic structure is to use the action of $\Gal(F_n/F)$ on $E(F_n)$ and the Galois cohomology groups attached to $E$, i.e. the Selmer and Tate-Shafarevich groups. As $n$ varies, these Galois actions fit into a coherent family, and taking a direct limit one obtains a short exact sequence of modules $$0 \longrightarrow E(F_\infty) \otimes(\mathbb{Q}_p/\mathbb{Z}_p) \longrightarrow \Sel_E(F_\infty)_p \longrightarrow \Sha_E(F_\infty)_p \longrightarrow 0 $$ over the profinite group algebra $\mathbb{Z}_p[[\Gal(F_\infty/F)]]$. When $\Gal(F_\infty/F) \cong \mathbb{Z}_p$, this ring is isomorphic to $\Lambda = \mathbb{Z}_p[[T]]$, and the $\Lambda$-module structure of $\Sel_E(F_\infty)_p$ and $\Sha_E(F_\infty)_p$ encode all the information about the curves $E(F_n)$ as $n$ varies. In this dissertation, it will be shown how one can classify certain finitely generated $\Lambda$-modules with fixed characteristic polynomial $f(T) \in \mathbb{Z}_p[T]$ up to isomorphism. The results yield explicit generators for each module up to isomorphism. As an application, it is shown how to identify the isomorphism class of $\Sel_E(\mathbb{Q_\infty})_p$ in this explicit form, where $\mathbb{Q}_\infty$ is the cyclotomic $\mathbb{Z}_p$-extension of $\mathbb{Q}$, and $E$ is an elliptic curve over $\mathbb{Q}$ with good ordinary reduction at $p$, and possessing the property that $E(\mathbb{Q})$ has no $p$-torsion.
ContributorsFranks, Chase (Author) / Childress, Nancy (Thesis advisor) / Barcelo, Helene (Committee member) / Bremner, Andrew (Committee member) / Jones, John (Committee member) / Spielberg, Jack (Committee member) / Arizona State University (Publisher)
Created2011