Matching Items (2)
154909-Thumbnail Image.png
Description
Nowadays, Computing is so pervasive that it has become indeed the 5th utility (after water, electricity, gas, telephony) as Leonard Kleinrock once envisioned. Evolved from utility computing, cloud computing has emerged as a computing infrastructure that enables rapid delivery of computing resources as a utility in a dynamically

Nowadays, Computing is so pervasive that it has become indeed the 5th utility (after water, electricity, gas, telephony) as Leonard Kleinrock once envisioned. Evolved from utility computing, cloud computing has emerged as a computing infrastructure that enables rapid delivery of computing resources as a utility in a dynamically scalable, virtualized manner. However, the current industrial cloud computing implementations promote segregation among different cloud providers, which leads to user lockdown because of prohibitive migration cost. On the other hand, Service-Orented Computing (SOC) including service-oriented architecture (SOA) and Web Services (WS) promote standardization and openness with its enabling standards and communication protocols. This thesis proposes a Service-Oriented Cloud Computing Architecture by combining the best attributes of the two paradigms to promote an open, interoperable environment for cloud computing development. Mutil-tenancy SaaS applicantions built on top of SOCCA have more flexibility and are not locked down by a certain platform. Tenants residing on a multi-tenant application appear to be the sole owner of the application and not aware of the existence of others. A multi-tenant SaaS application accommodates each tenant’s unique requirements by allowing tenant-level customization. A complex SaaS application that supports hundreds, even thousands of tenants could have hundreds of customization points with each of them providing multiple options, and this could result in a huge number of ways to customize the application. This dissertation also proposes innovative customization approaches, which studies similar tenants’ customization choices and each individual users behaviors, then provides guided semi-automated customization process for the future tenants. A semi-automated customization process could enable tenants to quickly implement the customization that best suits their business needs.
ContributorsSun, Xin (Author) / Tsai, Wei-Tek (Thesis advisor) / Xue, Guoliang (Committee member) / Davulcu, Hasan (Committee member) / Sarjoughian, Hessam S. (Committee member) / Arizona State University (Publisher)
Created2016
149538-Thumbnail Image.png
Description
Cloud computing has received significant attention recently as it is a new computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and visualized manner. SaaS (Software-as-a-Service) provide a now paradigm in cloud computing, which goal is to provide an effective and intelligent way

Cloud computing has received significant attention recently as it is a new computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and visualized manner. SaaS (Software-as-a-Service) provide a now paradigm in cloud computing, which goal is to provide an effective and intelligent way to support end users' on-demand requirements to computing resources, including maturity levels of customizable, multi-tenancy and scalability. To meet requirements of on-demand, my thesis discusses several critical research problems and proposed solutions using real application scenarios. Service providers receive multiple requests from customers, how to prioritize those service requests to maximize the business values is one of the most important issues in cloud. An innovative prioritization model is proposed, which uses different types of information, including customer, service, environment and workflow information to optimize the performance of the system. To provide "on-demand" services, an accurate demand prediction and provision become critical for the successful of the cloud computing. An effective demand prediction model is proposed, and applied to a real mortgage application. To support SaaS customization and fulfill the various functional and quality requirements of individual tenants, a unified and innovative multi-layered customization framework is proposed to support and manage the variability of SaaS applications. To support scalable SaaS, a hybrid database design to support SaaS customization with two-layer database partitioning is proposed. To support secure SaaS, O-RBAC, an ontology based RBAC (Role based Access Control) model is used for Multi-Tenancy Architecture in clouds. To support a significant number of tenants, an easy to use SaaS construction framework is proposed. As a summary, this thesis discusses the most important research problems in cloud computing, towards effective and intelligent SaaS. The research in this thesis is critical to the development of cloud computing and provides fundamental solutions to those problems.
ContributorsShao, Qihong (Author) / Tsai, Wei-Tek (Thesis advisor) / Askin, Ronald (Committee member) / Ye, Jieping (Committee member) / Naphade, Milind (Committee member) / Arizona State University (Publisher)
Created2011