Matching Items (3)
Filtering by

Clear all filters

187742-Thumbnail Image.png
Description
More than a century of research has investigated the etiology of dyslexia, coalescing around ‘phonological awareness’ – the ability to recognize and manipulate phonemes – as a trait typically deficient in reading disorders. Meanwhile, the last few decades of research in neuroscience have highlighted the brain as a predictive organ,

More than a century of research has investigated the etiology of dyslexia, coalescing around ‘phonological awareness’ – the ability to recognize and manipulate phonemes – as a trait typically deficient in reading disorders. Meanwhile, the last few decades of research in neuroscience have highlighted the brain as a predictive organ, which subliminally calibrates sensory expectations according to experience. Do the brains of adults with dyslexia respond differently than those of matched controls to expected tones and unexpected omissions? While auditory oddball paradigms have previously been used to study dyslexia, these studies often interpret group differences to indicate deficit auditory discrimination rather than deficit auditory prediction. The current study takes a step toward fusing theories of predictive coding and dyslexia, finding that event-related potentials related to auditory prediction are attenuated in adults with dyslexia compared with typical controls. It further suggests that understanding dyslexia, and perhaps other psychiatric disorders, in terms of contributory neural systems will elucidate shared and distinct etiologies.
ContributorsBennett, Augustin (Author) / Peter, Beate (Thesis advisor) / Daliri, Ayoub (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2023
152678-Thumbnail Image.png
Description
Recognition memory was investigated for naturalistic dynamic scenes. Although visual recognition for static objects and scenes has been investigated previously and found to be extremely robust in terms of fidelity and retention, visual recognition for dynamic scenes has received much less attention. In four experiments, participants view a number of

Recognition memory was investigated for naturalistic dynamic scenes. Although visual recognition for static objects and scenes has been investigated previously and found to be extremely robust in terms of fidelity and retention, visual recognition for dynamic scenes has received much less attention. In four experiments, participants view a number of clips from novel films and are then tasked to complete a recognition test containing frames from the previously viewed films and difficult foil frames. Recognition performance is good when foils are taken from other parts of the same film (Experiment 1), but degrades greatly when foils are taken from unseen gaps from within the viewed footage (Experiments 3 and 4). Removing all non-target frames had a serious effect on recognition performance (Experiment 2). Across all experiments, presenting the films as a random series of clips seemed to have no effect on recognition performance. Patterns of accuracy and response latency in Experiments 3 and 4 appear to be a result of a serial-search process. It is concluded that visual representations of dynamic scenes may be stored as units of events, and participant's old
ew judgments of individual frames were better characterized by a cued-recall paradigm than traditional recognition judgments.
ContributorsFerguson, Ryan (Author) / Homa, Donald (Thesis advisor) / Goldinger, Stephen (Committee member) / Glenberg, Arthur (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2014
161380-Thumbnail Image.png
Description
Individuals encounter problems daily wherein varying numbers of constraints require delimitation of memory to target goal-satisfying information. Multiply-constrained problems, such as compound remote associates, are commonly used to study this type of problem solving. Since their development, multiply-constrained problems have been theoretically and empirically related to creative thinking, analytical problem

Individuals encounter problems daily wherein varying numbers of constraints require delimitation of memory to target goal-satisfying information. Multiply-constrained problems, such as compound remote associates, are commonly used to study this type of problem solving. Since their development, multiply-constrained problems have been theoretically and empirically related to creative thinking, analytical problem solving, insight problem solving, intelligence, and a multitude of other cognitive abilities. Critically, in order to correctly solve a multiply-constrained problem the solver must have the solution available in memory and be able to target and access to that information. Experiment 1 determined that the cue – target relationship affects the likelihood that a problem is solved. Moreover, Experiment 2 identified that the association between cues and targets predicted inter- & intra-individual differences in multiply-constrained problem solving. Lastly, Experiment 3 found monetary incentives failed to improve problem solving performance likely due to knowledge serving as a limiting factor on performance. Additionally, problem solvers were shown to be able to reliably assess the likelihood they would solve a problem. Taken together all three studies demonstrated the importance of knowledge & knowledge structures on problem solving performance.
ContributorsEllis, Derek (Author) / Brewer, Gene A (Thesis advisor) / Homa, Donald (Committee member) / Blais, Chris (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2021