Matching Items (4)
150951-Thumbnail Image.png
Description
In the past century, a number of technological projects have been undertaken as grand solutions to social problems. In the so called century of biology, this technological world view focuses on biomedical advances. The President of the United States, who once called for nuclear weapons and space exploration, now calls

In the past century, a number of technological projects have been undertaken as grand solutions to social problems. In the so called century of biology, this technological world view focuses on biomedical advances. The President of the United States, who once called for nuclear weapons and space exploration, now calls for new biotechnologies, such as genomics, individualized medicine, and nanotechnology, which will improve the world by improving our biological lives. Portrayed as the Manhattan Project of the late 20th Century, the Human Genome Project (HGP) not only undertook the science of sequencing the human genome but also the ethics of it. For this thesis I ask how the HGP did this; what was the range of possibilities of goods and evils imagined by the HGP; and what, if anything, was left out. I show that the Ethical, Legal, and Social Implications (ELSI) research program of the HGP was inscribed with the competencies of the professional field of bioethics, which had lent itself useful for governing biomedical science and technology earlier in the 20th century. Drawing on a sociological framework for understanding the development of professional bioethics, I describe the development of ELSI, and I note how the given-in-advance boundaries between authorized/unauthorized questions shaped its formation and biased technologically based conceptualizations of social problems and potential solutions. In this sense, the HGP and ELSI served both as the ends of policy and as instruments of self-legitimation, thus re-inscribing and enacting the structures for these powerful sociotechnical imaginaries. I engage the HGP and ELSI through historical, sociological, and political philosophical analysis, by examining their immediate context of the NIH, the meso level of professional/disciplinary bioethics, and the larger context of American democracy and modernity. My argument is simultaneously a claim about how questions are asked and how knowledge and expertise are made, exposing the relationship between the HGP and ELSI as a mutually constitutive and reciprocally related form of coproduction of knowledge and social structures. I finish by arguing that ELSI is in a better position than bioethics to carry out the original project of that field, i.e., to provide a space to elucidate certain institutionally authorized questions about science and technology. Finally, I venture into making a prophecy about the future of ELSI and bioethics: that the former will replace the latter as a locus for only formally rational and thin ethical debates.
ContributorsCarvalho, Tito (Author) / Robert, Jason S (Thesis advisor) / Ellison, Karin D (Committee member) / Hurlbut, James B (Committee member) / Arizona State University (Publisher)
Created2012
149526-Thumbnail Image.png
Description
While the entire human genome has been sequenced, the understanding of its functional elements remains unclear. The Encyclopedia of DNA Elements (ENCODE) project analyzed 1% of the human genome and found that the majority of the human genome is transcribed, including non-protein coding regions. The hypothesis is that some of

While the entire human genome has been sequenced, the understanding of its functional elements remains unclear. The Encyclopedia of DNA Elements (ENCODE) project analyzed 1% of the human genome and found that the majority of the human genome is transcribed, including non-protein coding regions. The hypothesis is that some of the "non-coding" sequences are translated into peptides and small proteins. Using mass spectrometry numerous peptides derived from the ENCODE transcriptome were identified. Peptides and small proteins were also found from non-coding regions of the 1% of the human genome that the ENCODE did not find transcripts for. A large portion of these peptides mapped to the intronic regions of known genes, thus it is suspected that they may be undiscovered exons present in alternative spliceoforms of certain genes. Further studies proved the existence of polyadenylated RNAs coding for these peptides. Although their functional significance has not been determined, I anticipate the findings will lead to the discovery of new splice variants of known genes and possibly new transcriptional and translational mechanisms.
ContributorsWang, Lulu (Author) / Lake, Douglas (Thesis advisor) / Chang, Yung (Committee member) / Touchman, Jeffery (Committee member) / Arizona State University (Publisher)
Created2010
173036-Thumbnail Image.png
Description

George McDonald Church studied DNA from living and from extinct species in the US during the twentieth and twenty-first centuries. Church helped to develop and refine techniques with which to describe the complete sequence of all the DNA nucleotides in an organism's genome, techniques such as multiplex sequencing, polony sequencing,

George McDonald Church studied DNA from living and from extinct species in the US during the twentieth and twenty-first centuries. Church helped to develop and refine techniques with which to describe the complete sequence of all the DNA nucleotides in an organism's genome, techniques such as multiplex sequencing, polony sequencing, and nanopore sequencing. Church also contributed to the Human Genome Project, and in 2005 he helped start a company, the Personal Genome Project. Church proposed to use DNA from extinct species to clone and breed new organisms from those species.

Created2015-08-12
172926-Thumbnail Image.png
Description

Multiplex Automated Genome Engineering, or MAGE, is a genome editing technique that enables scientists to quickly edit an organism’s DNA to produce multiple changes across the genome. In 2009, two genetic researchers at the Wyss Institute at Harvard Medical School in Boston, Massachusetts, Harris Wang and George Church, developed the

Multiplex Automated Genome Engineering, or MAGE, is a genome editing technique that enables scientists to quickly edit an organism’s DNA to produce multiple changes across the genome. In 2009, two genetic researchers at the Wyss Institute at Harvard Medical School in Boston, Massachusetts, Harris Wang and George Church, developed the technology during a time when researchers could only edit one site in an organism’s genome at a time. Wang and Church called MAGE a form of accelerated evolution because it creates different cells with many variations of the same original genome over multiple generations. MAGE made genome editing much faster, cheaper, and easier for genetic researchers to create organisms with novel functions that they can use for a variety of purposes, such as making chemicals and medicine, developing biofuels, or further studying and understanding the genes that can cause harmful mutations in humans.

Created2020-12-10