Matching Items (2)
Filtering by

Clear all filters

152042-Thumbnail Image.png
Description
Rapid processing and reduced end-of-range diffusion effects demonstrate that susceptor-assisted microwave annealing is an efficient processing alternative for electrically activating dopants and removing ion-implantation damage in ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Raman spectroscopy and ion channeling analysis monitor the extent of ion implantation

Rapid processing and reduced end-of-range diffusion effects demonstrate that susceptor-assisted microwave annealing is an efficient processing alternative for electrically activating dopants and removing ion-implantation damage in ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Raman spectroscopy and ion channeling analysis monitor the extent of ion implantation damage and recrystallization. The presence of damage and defects in ion implanted silicon, and the reduction of the defects as a result of annealing, is observed by Rutherford backscattering spectrometry, moreover, the boron implanted silicon is further investigated by cross-section transmission electron microscopy. When annealing B+ implanted silicon, the dissolution of small extended defects and growth of large extended defects result in reduced crystalline quality that hinders the electrical activation process. Compared to B+ implanted silicon, phosphorus implanted samples experience more effective activation and achieve better crystalline quality. Comparison of end-of-range dopants diffusion resulting from microwave annealing and rapid thermal annealing (RTA) is done using secondary ion mass spectroscopy. Results from microwave annealed P+ implanted samples show that almost no diffusion occurs during time periods required for complete dopant activation and silicon recrystallization. The relative contributions to heating of the sample, by a SiC susceptor, and by Si self-heating in the microwave anneal, were also investigated. At first 20s, the main contributor to the sample's temperature rise is Si self-heating by microwave absorption.
ContributorsZhao, Zhao (Author) / Alford, Terry Lynn (Thesis advisor) / Theodore, David (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
149810-Thumbnail Image.png
Description
This thesis discusses the use of low temperature microwave anneal as an alternative technique to recrystallize materials damaged or amorphized due to implantation techniques. The work focuses on the annealing of high-Z doped Si wafers that are incapable of attaining high temperatures required for recrystallizing the damaged implanted layers by

This thesis discusses the use of low temperature microwave anneal as an alternative technique to recrystallize materials damaged or amorphized due to implantation techniques. The work focuses on the annealing of high-Z doped Si wafers that are incapable of attaining high temperatures required for recrystallizing the damaged implanted layers by microwave absorption The increasing necessity for quicker and more efficient processing techniques motivates study of the use of a single frequency applicator microwave cavity along with a Fe2O3 infused SiC-alumina susceptor/applicator as an alternative post implantation process. Arsenic implanted Si samples of different dopant concentrations and implantation energies were studied pre and post microwave annealing. A set of as-implanted Si samples were also used to assess the effect of inactive dopants against presence of electrically active dopants on the recrystallization mechanisms. The extent of damage repair and Si recrystallization of the damage caused by arsenic and Si implantation of Si is determined by cross-section transmission electron microscopy and Raman spectroscopy. Dopant activation is evaluated for the As implanted Si by sheet resistance measurements. For the same, secondary ion mass spectroscopy analysis is used to compare the extent of diffusion that results from such microwave annealing with that experienced when using conventional rapid thermal annealing (RTA). Results show that compared to susceptor assisted microwave annealing, RTA caused undesired dopant diffusion. The SiC-alumina susceptor plays a predominant role in supplying heat to the Si substrate, and acts as an assistor that helps a high-Z dopant like arsenic to absorb the microwave energy using a microwave loss mechanism which is a combination of ionic and dipole losses. Comparisons of annealing of the samples were done with and without the use of the susceptor, and confirm the role played by the susceptor, since the samples donot recrystallize when the surface heating mechanism provided by the susceptor is not incorporated. Variable frequency microwave annealing was also performed over the as-implanted Si samples for durations and temperatures higher than the single frequency microwave anneal, but only partial recrystallization of the damaged layer was achieved.
ContributorsVemuri, Rajitha (Author) / Alford, Terry L. (Thesis advisor) / Theodore, David (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2011