Matching Items (3)
Filtering by

Clear all filters

149754-Thumbnail Image.png
Description
A good production schedule in a semiconductor back-end facility is critical for the on time delivery of customer orders. Compared to the front-end process that is dominated by re-entrant product flows, the back-end process is linear and therefore more suitable for scheduling. However, the production scheduling of the back-end process

A good production schedule in a semiconductor back-end facility is critical for the on time delivery of customer orders. Compared to the front-end process that is dominated by re-entrant product flows, the back-end process is linear and therefore more suitable for scheduling. However, the production scheduling of the back-end process is still very difficult due to the wide product mix, large number of parallel machines, product family related setups, machine-product qualification, and weekly demand consisting of thousands of lots. In this research, a novel mixed-integer-linear-programming (MILP) model is proposed for the batch production scheduling of a semiconductor back-end facility. In the MILP formulation, the manufacturing process is modeled as a flexible flow line with bottleneck stages, unrelated parallel machines, product family related sequence-independent setups, and product-machine qualification considerations. However, this MILP formulation is difficult to solve for real size problem instances. In a semiconductor back-end facility, production scheduling usually needs to be done every day while considering updated demand forecast for a medium term planning horizon. Due to the limitation on the solvable size of the MILP model, a deterministic scheduling system (DSS), consisting of an optimizer and a scheduler, is proposed to provide sub-optimal solutions in a short time for real size problem instances. The optimizer generates a tentative production plan. Then the scheduler sequences each lot on each individual machine according to the tentative production plan and scheduling rules. Customized factory rules and additional resource constraints are included in the DSS, such as preventive maintenance schedule, setup crew availability, and carrier limitations. Small problem instances are randomly generated to compare the performances of the MILP model and the deterministic scheduling system. Then experimental design is applied to understand the behavior of the DSS and identify the best configuration of the DSS under different demand scenarios. Product-machine qualification decisions have long-term and significant impact on production scheduling. A robust product-machine qualification matrix is critical for meeting demand when demand quantity or mix varies. In the second part of this research, a stochastic mixed integer programming model is proposed to balance the tradeoff between current machine qualification costs and future backorder costs with uncertain demand. The L-shaped method and acceleration techniques are proposed to solve the stochastic model. Computational results are provided to compare the performance of different solution methods.
ContributorsFu, Mengying (Author) / Askin, Ronald G. (Thesis advisor) / Zhang, Muhong (Thesis advisor) / Fowler, John W (Committee member) / Pan, Rong (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
154216-Thumbnail Image.png
Description
The Partition of Variance (POV) method is a simplistic way to identify large sources of variation in manufacturing systems. This method identifies the variance by estimating the variance of the means (between variance) and the means of the variance (within variance). The project shows that the method correctly identifies the

The Partition of Variance (POV) method is a simplistic way to identify large sources of variation in manufacturing systems. This method identifies the variance by estimating the variance of the means (between variance) and the means of the variance (within variance). The project shows that the method correctly identifies the variance source when compared to the ANOVA method. Although the variance estimators deteriorate when varying degrees of non-normality is introduced through simulation; however, the POV method is shown to be a more stable measure of variance in the aggregate. The POV method also provides non-negative, stable estimates for interaction when compared to the ANOVA method. The POV method is shown to be more stable, particularly in low sample size situations. Based on these findings, it is suggested that the POV is not a replacement for more complex analysis methods, but rather, a supplement to them. POV is ideal for preliminary analysis due to the ease of implementation, the simplicity of interpretation, and the lack of dependency on statistical analysis packages or statistical knowledge.
ContributorsLittle, David John (Author) / Borror, Connie (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Broatch, Jennifer (Committee member) / Arizona State University (Publisher)
Created2015
152810-Thumbnail Image.png
Description
Industrial activities have damaged the natural environment at an unprecedented scale. A number of approaches to environmentally responsible design and sustainability have been developed that are aimed at minimizing negative impacts derived from products on the environment. Environmental assessment methods exist as well to measure these impacts. Major environmentally responsible

Industrial activities have damaged the natural environment at an unprecedented scale. A number of approaches to environmentally responsible design and sustainability have been developed that are aimed at minimizing negative impacts derived from products on the environment. Environmental assessment methods exist as well to measure these impacts. Major environmentally responsible approaches to design and sustainability were analyzed using content analysis techniques. The results show several recommendations to minimize product impacts through design, and dimensions to which they belong. Two products made by a manufacturing firm with exceptional commitment to environmental responsibility were studied to understand how design approaches and assessment methods were used in their development. The results showed that the company used several strategies for environmentally responsible design as well as assessment methods in product and process machine design, both of which resulted in reduced environmental impacts of their products. Factors that contributed positively to reduce impacts are the use of measurement systems alongside environmentally responsible design, as well as inspiring innovations by observing how natural systems work. From a managerial perspective, positive influencing factors included a commitment to environmental responsibility from the executive level of the company and a clear vision about sustainability that has been instilled from the top through every level of employees. Additionally, a high degree of collaboration between the company and its suppliers and customers was instrumental in making the success possible.
ContributorsHuerta Gajardo, Oscar André (Author) / Giard, Jacques (Thesis advisor) / White, Philip (Committee member) / Dooley, Kevin (Committee member) / Arizona State University (Publisher)
Created2014