Matching Items (4)
149470-Thumbnail Image.png
Description
The highly-social plateau pika (Lagomorpha: Ochotona curzoniae) excavates vast burrow complexes in alpine meadows on the Tibetan Plateau. Colonies of over 300 individuals/ha have been reported. As an ecosystem engineer, their burrowing may positively impact ecosystem health by increasing plant species diversity, enhancing soil mixing, and boosting water infiltration. However,

The highly-social plateau pika (Lagomorpha: Ochotona curzoniae) excavates vast burrow complexes in alpine meadows on the Tibetan Plateau. Colonies of over 300 individuals/ha have been reported. As an ecosystem engineer, their burrowing may positively impact ecosystem health by increasing plant species diversity, enhancing soil mixing, and boosting water infiltration. However, pikas are commonly regarded as pests, and are heavily poisoned throughout their range. The underlying assumption of eradication programs is that eliminating pikas will improve rangeland quality and decrease soil erosion. This dissertation explores the link between plateau pikas and the alpine meadow ecosystem in Qinghai Province, PRC. This research uses both comparative field studies and theoretical modeling to clarify the role of pika disturbance. Specifically, these studies quantify the impact of pikas on nutrient cycling (via nutrient concentrations of vegetation and soil), hydrology (via water infiltration), local landscape properties (via spatial pattern description), and vascular plant communities (via species richness and composition). The competitive relationship between livestock and pikas is examined with a mathematical model. Results of this research indicate that pika colonies have both local and community level effects on water infiltration and plant species richness. A major contribution of pika disturbance is increased spatial heterogeneity, which likely underlies differences in the plant community. These findings suggest that the positive impact of plateau pikas on rangeland resources has been undervalued. In concurrence with other studies, this work concludes that plateau pikas provide valuable ecosystem services on the Tibetan Plateau.
ContributorsHogan, Brigitte Wieshofer (Author) / Smith, Andrew T. (Thesis advisor) / Anderies, J. Marty (Committee member) / Briggs, John M. (Committee member) / Stromberg, Juliet C. (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2010
158562-Thumbnail Image.png
Description
Human land use and land cover change alter key features of the landscape that may favor habitat selection by some species. Lizards are especially sensitive to these alterations because they rely on their external environment for regulating their body temperature. However, because of their diverse life-history traits and strategies, some

Human land use and land cover change alter key features of the landscape that may favor habitat selection by some species. Lizards are especially sensitive to these alterations because they rely on their external environment for regulating their body temperature. However, because of their diverse life-history traits and strategies, some are able to respond well to disturbance by using their habitat in various ways. To understand how they use their habitat and how human modifications may impact their ability to do this, biologists must identify where they occur and the habitat characteristics on which they depend. Therefore, I used species occupancy modeling to determine (1) whether disturbance predicts the presence of two sympatric congeneric (species of the same genus) lizard species Sceloporus grammicus and S. torquatus, and (2) which habitat characteristics are essential for predicting their occupancy and detection. I focused my study in central Mexico, a region of prevalent land use and land cover change. Here, I conducted visual encounter and habitat surveys at 100 1-hectare sites during the spring of 2019. I measured vegetation and ground cover, average tree diameter, and abundance of refuges. I recorded air temperature, relative humidity, and elevation. I summarized sites as either undisturbed or disturbed, based on the presence of human development. I also summarized sites by ecosystem type, desert or forest, based on vegetation composition (i.e., desert-adapted vs. non-desert-adapted plants), evidence of remnant forest, air temperature, and relative humidity. I found that S. torquatus was more likely to be present in disturbed habitat, whereas S. grammicus was more likely to be present in areas with leaf litter, tree cover, and woody debris. S. torquatus was twice as likely to be detected in forests than deserts, and S. grammicus was more likely to be detected at sites with high elevation and high relative humidity, low temperature, and herbaceous and grass cover. These results emphasize the utility of species occupancy modeling for estimating detection and occupancy in dynamic landscapes.
ContributorsFlores, Jennifer (Author) / Martins, Emília P. (Thesis advisor) / Bateman, Heather L (Thesis advisor) / Zuniga-Vega, J. Jaime (Committee member) / Arizona State University (Publisher)
Created2020
158285-Thumbnail Image.png
Description
Cetacean-based ecotourism is a popular activity and an important source of revenue for many countries. Whale watching, a subset of cetacean-based ecotourism, is vital to supporting conservation efforts and provides numerous benefits to local communities including educational opportunities and job creation. However, the sustainability of whale-based ecotourism depends on the

Cetacean-based ecotourism is a popular activity and an important source of revenue for many countries. Whale watching, a subset of cetacean-based ecotourism, is vital to supporting conservation efforts and provides numerous benefits to local communities including educational opportunities and job creation. However, the sustainability of whale-based ecotourism depends on the behavior and health of whale populations and is therefore vital that ecotourism industries consider the impact their activities have on whale reproductive behavior. To address this statement, behavioral data (e.g. direction change, breaching, slap behaviors, diving, and spy hops) were collected from humpback whales (Megaptera novaeangliae) in Las Perlas Archipelago off the Pacific coast of Panama to determine if vessel presence had an influence on whale behaviors. Studies were recorded during their breeding season from August through September in 2019. Based on 47 behavioral observations, higher boat density corresponded with humpback whales changing direction which is believed to be a sign of disturbance. This result is important given Panamanian regulations implemented on February 13 of 2007 prohibit whale-based tourism from disturbing whales, which is measured as changes in behavior. Because there is no systematic monitoring of whale watching activity to enforce the regulations, there is currently little compliance among tour operators. The integration of animal behavior research into management planning will result in more effective regulation and compliance of conservation policies.
ContributorsAmrein, Arielle (Author) / Gerber, Leah R. (Thesis advisor) / Guzman, Hector M (Committee member) / Polidoro, Beth (Committee member) / Arizona State University (Publisher)
Created2020
161918-Thumbnail Image.png
Description

Climate change is causing hydrologic intensification globally by increasing both the frequency and magnitude of floods and droughts. While environmental variation is a key regulator at all levels of ecological organization, such changes to the hydrological cycle that are beyond the normal range of variability can have strong impacts on

Climate change is causing hydrologic intensification globally by increasing both the frequency and magnitude of floods and droughts. While environmental variation is a key regulator at all levels of ecological organization, such changes to the hydrological cycle that are beyond the normal range of variability can have strong impacts on stream and riparian ecosystems within sensitive landscapes, such as the American Southwest. The main objective of this study was to investigate how anomalous hydrologic variability influences macroinvertebrate communities in desert streams. I studied seasonal changes in aquatic macroinvertebrate abundances in eleven streams that encompass a hydrologic gradient across Arizona’s Sonoran Desert. This analysis was coupled with the quantification and assessment of stochastic hydrology to determine influences of flow regimes and discrete events on invertebrate community composition. I found high community variability within sites, illustrated by seasonal measures of beta diversity and nonmetric multidimensional scaling (NMDS) plots. I observed notable patterns of NMDS data points when invertebrate abundances were summarized by summer versus winter surveys. These results suggest that there is a difference within the communities between summer and winter seasons, irrespective of differences in site hydroclimate. Estimates of beta diversity were the best metric for summarizing and comparing diversity among sites, compared to richness difference and replacement. Seasonal measures of beta diversity either increased, decreased, or stayed constant across the study period, further demonstrating the high variation within and among study sites. Regime shifts, summarized by regime shift frequency (RSF) and mean net annual anomaly (NAA), and anomalous events, summarized by the power of blue noise (Maximum Blue Noise), were the best predictors of macroinvertebrate diversity, and thus should be more widely applied to ecological data. These results suggest that future studies of community composition in freshwater systems should focus on understanding the cause of variation in biodiversity gradients. This study highlights the importance of considering both flow regimes and discrete anomalous events when studying spatial and temporal variation in stream communities.

ContributorsSainz, Ruby (Author) / Sabo, John L (Thesis advisor) / Grimm, Nancy (Committee member) / Stampoulis, Dimitrios (Committee member) / Arizona State University (Publisher)
Created2021