Matching Items (2)
150416-Thumbnail Image.png
Description
The pattern and strength of genetic covariation is shaped by selection so that it is strong among functionally related characters and weak among functionally unrelated characters. Genetic covariation is expressed as phenotypic covariation within species and acts as a constraint on evolution by limiting the ability of linked characters to

The pattern and strength of genetic covariation is shaped by selection so that it is strong among functionally related characters and weak among functionally unrelated characters. Genetic covariation is expressed as phenotypic covariation within species and acts as a constraint on evolution by limiting the ability of linked characters to evolve independently of one another. Such linked characters are "constrained" and are expected to express covariation both within and among species. In this study, the pattern and magnitude of covariation among aspects of dental size and shape are investigated in anthropoid primates. Pleiotropy has been hypothesized to play a significant role in derivation of derived hominin morphologies. This study tests a series of hypotheses; including 1) that negative within- and among-species covariation exists between the anterior (incisors and canines) and postcanine teeth, 2) that covariation is strong and positive between the canines and incisors, 3) that there is a dimorphic pattern of within-species covariation and coevolution for characters of the canine honing complex, 4) that patterns of covariation are stable among anthropoids, and 5) that genetic constraints have been a strong bias on the diversification of anthropoid dental morphology. The study finds that patterns of variance-covariance are conserved among species. Despite these shared patterns of variance-covariance, dental diversification has frequently occurred along dimensions not aligned with the vector of genetic constraint. As regards the canine honing complex, there is no evidence for a difference in the pleiotropic organization or the coevolution of characters of the complex in males and females, which undermines arguments that the complex is selectively important only in males. Finally, there is no evidence for strong or negative pleiotropy between any dental characters, which falsifies hypotheses that predict such relationships between incisors and postcanine teeth or between the canines and the postcanine teeth.
ContributorsDelezene, Lucas (Author) / Kimbel, William H. (Thesis advisor) / Schwartz, Gary T (Committee member) / Spencer, Mark (Committee member) / Verrelli, Brian C (Committee member) / Arizona State University (Publisher)
Created2011
149354-Thumbnail Image.png
Description
Early hominins present an unusual pattern of sexual dimorphism. On one hand, the canine teeth of these species are weakly size-dimorphic, vertically short, and nonhoning, suggesting a social system characterized by infrequent, low-intensity intermale competition and monogamous pair-bonding. On the other hand, marked size variation in skeletal remains attributed to

Early hominins present an unusual pattern of sexual dimorphism. On one hand, the canine teeth of these species are weakly size-dimorphic, vertically short, and nonhoning, suggesting a social system characterized by infrequent, low-intensity intermale competition and monogamous pair-bonding. On the other hand, marked size variation in skeletal remains attributed to species of Australopithecus is thought to reflect strong body-mass dimorphism, which is more consistent with intense intermale competition. Reconciling these conflicting signals and understanding their adaptive significance is a major goal of paleoanthropology. This dissertation research contributes to this objective by investigating factors that may constrain or reduce canine height in extant anthropoid primates. Two hypotheses regarding the relationship between canine height and other elements of the masticatory system were tested using phylogenetic comparative methods. According to the first hypothesis, canine reduction is a pleiotropic by-product of changes in the sizes of other components of the dentition. With respect to canine height, the results of this study fail to support this idea. There is limited evidence for a relationship between basal canine crown dimensions and incisor and postcanine size, but significant interspecific correlations between these variables are not strong and are restricted primarily to the female maxillary dentition. These results indicate that if pleiotropy influences canine size, then its effects are weak. The second hypothesis proposes that canine reduction is a consequence of selection for increased jaw-muscle leverage. This hypothesis receives some support: there is a clear inverse relationship between canine height and the leverage of the masseter muscle in male anthropoids. Females do not exhibit this association due to the fact that dimorphism in muscle leverage is weak or absent in most anthropoid species; in other words, female muscle leverage tracks male muscle leverage, which is linked to canine height. Leverage of the temporalis muscle is not correlated with canine height in either sex. Two specimens of the 3.0-3.7-million-year-old hominin Australopithecus afarensis fall at or beyond the upper end of the great ape range of variation in masseter leverage, which is consistent with the idea that hominin canine evolution was influenced by selection for increased jaw-muscle leverage.
ContributorsScott, Jeremiah Ezekiel (Author) / Kimbel, William H. (Thesis advisor) / Schwartz, Gary T. (Committee member) / Spencer, Mark A. (Committee member) / Arizona State University (Publisher)
Created2010