Matching Items (6)
151879-Thumbnail Image.png
Description
This dissertation investigates the long-term consequences of human land-use practices in general, and in early agricultural villages in specific. This pioneering case study investigates the "collapse" of the Early (Pre-Pottery) Neolithic lifeway, which was a major transformational event marked by significant changes in settlement patterns, material culture, and social markers.

This dissertation investigates the long-term consequences of human land-use practices in general, and in early agricultural villages in specific. This pioneering case study investigates the "collapse" of the Early (Pre-Pottery) Neolithic lifeway, which was a major transformational event marked by significant changes in settlement patterns, material culture, and social markers. To move beyond traditional narratives of cultural collapse, I employ a Complex Adaptive Systems approach to this research, and combine agent-based computer simulations of Neolithic land-use with dynamic and spatially-explicit GIS-based environmental models to conduct experiments into long-term trajectories of different potential Neolithic socio-environmental systems. My analysis outlines how the Early Neolithic "collapse" was likely instigated by a non-linear sequence of events, and that it would have been impossible for Neolithic peoples to recognize the long-term outcome of their actions. The experiment-based simulation approach shows that, starting from the same initial conditions, complex combinations of feedback amplification, stochasticity, responses to internal and external stimuli, and the accumulation of incremental changes to the socio-natural landscape, can lead to widely divergent outcomes over time. Thus, rather than being an inevitable consequence of specific Neolithic land-use choices, the "catastrophic" transformation at the end of the Early Neolithic was an emergent property of the Early Neolithic socio-natural system itself, and thus likely not an easily predictable event. In this way, my work uses the technique of simulation modeling to connect CAS theory with the archaeological and geoarchaeological record to help better understand the causes and consequences of socio-ecological transformation at a regional scale. The research is broadly applicable to other archaeological cases of resilience and collapse, and is truly interdisciplinary in that it draws on fields such as geomorphology, computer science, and agronomy in addition to archaeology.
ContributorsUllah, Isaac (Author) / Barton, C. Michael (Thesis advisor) / Banning, Edward B. (Committee member) / Clark, Geoffrey (Committee member) / Arrowsmith, J. Ramon (Committee member) / Arizona State University (Publisher)
Created2013
Description
An issue with the utilization of swimming pools is that pumps are operated an excessive number of hours to keep the pool free of debris and algae. Case in point, according to the pool industry, a pump should operate one hour for every ten degrees of ambient temperature. A dynamic

An issue with the utilization of swimming pools is that pumps are operated an excessive number of hours to keep the pool free of debris and algae. Case in point, according to the pool industry, a pump should operate one hour for every ten degrees of ambient temperature. A dynamic model and a control strategy have been developed using Matlab/Simulink that uses environmental conditions together with chemicals that hinder or aid algae growth in order to determine algae population. This model suggests ways to function the pump on shorter time intervals to reduce energy consumption, while simultaneously maintaining algae populations at acceptable levels. Other factors included in the model are pool thermal dynamics and pool pump/filter performance characteristics, since they also have an effect algae growth. This thesis presents the first step for an alternative way of operating a swimming pool by minimizing operating costs while eliminating algae.
ContributorsBallard, Roderick (Author) / Macia, Narciso (Thesis advisor) / Narveson, Brentt (Committee member) / Mchenry, Albert (Committee member) / Dempster, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
152420-Thumbnail Image.png
Description
This dissertation considers an integrated approach to system design and controller design based on analyzing limits of system performance. Historically, plant design methodologies have not incorporated control relevant considerations. Such an approach could result in a system that might not meet its specifications (or one that requires a complex control

This dissertation considers an integrated approach to system design and controller design based on analyzing limits of system performance. Historically, plant design methodologies have not incorporated control relevant considerations. Such an approach could result in a system that might not meet its specifications (or one that requires a complex control architecture to do so). System and controller designers often go through several iterations in order to converge to an acceptable plant and controller design. The focus of this dissertation is on the design and control an air-breathing hypersonic vehicle using such an integrated system-control design framework. The goal is to reduce the number of system-control design iterations (by explicitly incorporate control considerations in the system design process), as well as to influence the guidance/trajectory specifications for the system. Due to the high computational costs associated with obtaining a dynamic model for each plant configuration considered, approximations to the system dynamics are used in the control design process. By formulating the control design problem using bilinear and polynomial matrix inequalities, several common control and system design constraints can be simultaneously incorporated into a vehicle design optimization. Several design problems are examined to illustrate the effectiveness of this approach (and to compare the computational burden of this methodology against more traditional approaches).
ContributorsSridharan, Srikanth (Author) / Rodriguez, Armando A (Thesis advisor) / Mittelmann, Hans D (Committee member) / Si, Jennie (Committee member) / Tsakalis, Konstantinos S (Committee member) / Arizona State University (Publisher)
Created2014
153486-Thumbnail Image.png
Description
Quantum resilience is a pragmatic theory that allows systems engineers to formally characterize the resilience of systems. As a generalized theory, it not only clarifies resilience in the literature, but also can be applied to all disciplines and domains of discourse. Operationalizing resilience in this manner permits decision-makers to compare

Quantum resilience is a pragmatic theory that allows systems engineers to formally characterize the resilience of systems. As a generalized theory, it not only clarifies resilience in the literature, but also can be applied to all disciplines and domains of discourse. Operationalizing resilience in this manner permits decision-makers to compare and contrast system deployment options for suitability in a variety of environments and allows for consistent treatment of resilience across domains. Systems engineers, whether planning future infrastructures or managing ecosystems, are increasingly asked to deliver resilient systems. Quantum resilience provides a way forward that allows specific resilience requirements to be specified, validated, and verified.

Quantum resilience makes two very important claims. First, resilience cannot be characterized without recognizing both the system and the valued function it provides. Second, resilience is not about disturbances, insults, threats, or perturbations. To avoid crippling infinities, characterization of resilience must be accomplishable without disturbances in mind. In light of this, quantum resilience defines resilience as the extent to which a system delivers its valued functions, and characterizes resilience as a function of system productivity and complexity. System productivity vis-à-vis specified “valued functions” involves (1) the quanta of the valued function delivered, and (2) the number of systems (within the greater system) which deliver it. System complexity is defined structurally and relationally and is a function of a variety of items including (1) system-of-systems hierarchical decomposition, (2) interfaces and connections between systems, and (3) inter-system dependencies.

Among the important features of quantum resilience is that it can be implemented in any system engineering tool that provides sufficient design and specification rigor (i.e., one that supports standards like the Lifecycle and Systems Modeling languages and frameworks like the DoD Architecture Framework). Further, this can be accomplished with minimal software development and has been demonstrated in three model-based system engineering tools, two of which are commercially available, well-respected, and widely used. This pragmatic approach assures transparency and consistency in characterization of resilience in any discipline.
ContributorsRoberts, Thomas Wade (Author) / Allenby, Braden (Thesis advisor) / Chester, Mikhail (Committee member) / Anderies, John M (Committee member) / Arizona State University (Publisher)
Created2015
149315-Thumbnail Image.png
Description
In today's global market, companies are facing unprecedented levels of uncertainties in supply, demand and in the economic environment. A critical issue for companies to survive increasing competition is to monitor the changing business environment and manage disturbances and changes in real time. In this dissertation, an integrated framework is

In today's global market, companies are facing unprecedented levels of uncertainties in supply, demand and in the economic environment. A critical issue for companies to survive increasing competition is to monitor the changing business environment and manage disturbances and changes in real time. In this dissertation, an integrated framework is proposed using simulation and online calibration methods to enable the adaptive management of large-scale complex supply chain systems. The design, implementation and verification of the integrated approach are studied in this dissertation. The research contributions are two-fold. First, this work enriches symbiotic simulation methodology by proposing a framework of simulation and advanced data fusion methods to improve simulation accuracy. Data fusion techniques optimally calibrate the simulation state/parameters by considering errors in both the simulation models and in measurements of the real-world system. Data fusion methods - Kalman Filtering, Extended Kalman Filtering, and Ensemble Kalman Filtering - are examined and discussed under varied conditions of system chaotic levels, data quality and data availability. Second, the proposed framework is developed, validated and demonstrated in `proof-of-concept' case studies on representative supply chain problems. In the case study of a simplified supply chain system, Kalman Filtering is applied to fuse simulation data and emulation data to effectively improve the accuracy of the detection of abnormalities. In the case study of the `beer game' supply chain model, the system's chaotic level is identified as a key factor to influence simulation performance and the choice of data fusion method. Ensemble Kalman Filtering is found more robust than Extended Kalman Filtering in a highly chaotic system. With appropriate tuning, the improvement of simulation accuracy is up to 80% in a chaotic system, and 60% in a stable system. In the last study, the integrated framework is applied to adaptive inventory control of a multi-echelon supply chain with non-stationary demand. It is worth pointing out that the framework proposed in this dissertation is not only useful in supply chain management, but also suitable to model other complex dynamic systems, such as healthcare delivery systems and energy consumption networks.
ContributorsWang, Shanshan (Author) / Wu, Teresa (Thesis advisor) / Fowler, John (Thesis advisor) / Pfund, Michele (Committee member) / Li, Jing (Committee member) / Pavlicek, William (Committee member) / Arizona State University (Publisher)
Created2010
151408-Thumbnail Image.png
Description
A fundamental question in the field of strategic management is how companies achieve sustainable competitive advantage. The Market-Oriented Theory (MOT), the Resource-Based Model and their complementary perspective try to answer this fundamental question. The primary goal of this study is to lay the groundwork for Standardized Strategic Assessment Framework (SSAF).

A fundamental question in the field of strategic management is how companies achieve sustainable competitive advantage. The Market-Oriented Theory (MOT), the Resource-Based Model and their complementary perspective try to answer this fundamental question. The primary goal of this study is to lay the groundwork for Standardized Strategic Assessment Framework (SSAF). The SSAF, which consists of a set of six models, aids in the evaluation and assessment of current and future strategic positioning of Small and Medium Enterprises (SMEs). The SSAF was visualized by IDEF0, a systems engineering tool. In addition, a secondary goal is the development of models to explain relationships between a company's resources, capabilities, and competitive strategy within the SSAF. Six models are considered within the SSAF, including R&D; activities model, product innovation model, process innovation model, operational excellence model, and export performance model. Only one of them, R&D; activities model was explained in-debt and developed a model by transformational system. In the R&D; activities model, the following question drives the investigation. Do company R&D; inputs (tangible, intangible and human resources) affect R&D; activities (basic research, applied research, and experimental development)? Based on this research question, eight hypotheses were extrapolated regarding R&D; activities model. In order to analyze these hypotheses, survey questions were developed for the R&D; model. A survey was sent to academic staff and industry experts for a survey instrument validation. Based on the survey instrument validation, content validity has been established and questions, format, and scales have been improved for future research application.
ContributorsDemir, Mustafa (Author) / Waissi, Gary (Thesis advisor) / Humble, Jane (Committee member) / Polesky, Gerald (Committee member) / Arizona State University (Publisher)
Created2012