Matching Items (6)
Filtering by

Clear all filters

150330-Thumbnail Image.png
Description
Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for

Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for environmental flows, there are numerous unresolved ecohydrological issues regarding the efficacy of effluent to sustain groundwater-dependent riparian ecosystems. This research examined how nutrient-rich effluent, released into waterways with varying depths to groundwater, influences riparian plant community development. Statewide analysis of spatial and temporal patterns of effluent generation and release revealed that hydrogeomorphic setting significantly influences downstream riparian response. Approximately 70% of effluent released is into deep groundwater systems, which produced the lowest riparian development. A greenhouse study assessed how varying concentrations of nitrogen and phosphorus, emulating levels in effluent, influenced plant community response. With increasing nitrogen concentrations, vegetation emerging from riparian seed banks had greater biomass, reduced species richness, and greater abundance of nitrophilic species. The effluent-dominated Santa Cruz River in southern Arizona, with a shallow groundwater upper reach and deep groundwater lower reach, served as a study river while the San Pedro River provided a control. Analysis revealed that woody species richness and composition were similar between the two systems. Hydric pioneers (Populus fremontii, Salix gooddingii) were dominant at perennial sites on both rivers. Nitrophilic species (Conium maculatum, Polygonum lapathifolium) dominated herbaceous plant communities and plant heights were greatest in effluent-dominated reaches. Riparian vegetation declined with increasing downstream distance in the upper Santa Cruz, while patterns in the lower Santa Cruz were confounded by additional downstream agricultural input and a channelized floodplain. There were distinct longitudinal and lateral shifts toward more xeric species with increasing downstream distance and increasing lateral distance from the low-flow channel. Patterns in the upper and lower Santa Cruz reaches indicate that water availability drives riparian vegetation outcomes below treatment facilities. Ultimately, this research informs decision processes and increases adaptive capacity for water resources policy and management through the integration of ecological data in decision frameworks regarding the release of effluent for environmental flows.
ContributorsWhite, Margaret Susan (Author) / Stromberg, Juliet C. (Thesis advisor) / Fisher, Stuart G. (Committee member) / White, Dave (Committee member) / Holway, James (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2011
150149-Thumbnail Image.png
Description
The sacred San Francisco Peaks in northern Arizona have been at the center of a series of land development controversies since the 1800s. Most recently, a controversy arose over a proposal by the ski area on the Peaks to use 100% reclaimed water to make artificial snow. The current state

The sacred San Francisco Peaks in northern Arizona have been at the center of a series of land development controversies since the 1800s. Most recently, a controversy arose over a proposal by the ski area on the Peaks to use 100% reclaimed water to make artificial snow. The current state of the San Francisco Peaks controversy would benefit from a decision-making process that holds sustainability policy at its core. The first step towards a new sustainability-focused deliberative process regarding a complex issue like the San Francisco Peaks controversy requires understanding the issue's origins and the perspectives of the people involved in the issue. My thesis provides an historical analysis of the controversy and examines some of the laws and participatory mechanisms that have shaped the decision-making procedures and power structures from the 19th century to the early 21st century.
ContributorsMahoney, Maren (Author) / Hirt, Paul W. (Thesis advisor) / Tsosie, Rebecca (Committee member) / White, Dave (Committee member) / Arizona State University (Publisher)
Created2011
168834-Thumbnail Image.png
Description
Food waste is one of the most significant food system inefficiencies with environmental, financial, and social consequences. This waste, which occurs more at the consumer stage in high income countries, is often attributed to consumers’ behavior. While behavior is a contributing factor, the role of other contextual factors in influencing

Food waste is one of the most significant food system inefficiencies with environmental, financial, and social consequences. This waste, which occurs more at the consumer stage in high income countries, is often attributed to consumers’ behavior. While behavior is a contributing factor, the role of other contextual factors in influencing this behavior has not been systematically analyzed. Understanding contextual drivers of consumer food waste behavior is important, as behavior sits in a matrix of technology, infrastructures, institutions and social structure. Hence designing effective interventions will require a systems perceptive of the problem. In paper 1, I used Socio-ecological framing to understand how personal, interpersonal, socio-cultural, built, and institutional environments contribute to food waste at the consumer stage. In paper 2, I explored the perception of stakeholders in Phoenix on the effectiveness and feasibility of possible interventions that could be used to tackle consumer food waste. In paper 3, I examined the impact of knowledge and awareness of the environmental consequence of food waste in terms of embedded water and energy on the cognitive factors responsible for consumer food waste behavior. Across these three papers, I have identified three findings. First, the most influential factor responsible for consumer food waste is meal planning, as many decisions about food management depend on it. However, there are many contextual factors that discourage meal planning. Other factors identified include the wide gap between food producers and consumers, the low price of food, and marketing strategies used by retailers to encourage food purchases. Systems level interventions will be required to address these drivers that provide an enabling environment for behavioral change. Second stakeholders in the city overwhelmingly support and agree that education will be the most effective and feasible intervention to address consumer food waste, 3) there is need to carefully craft education materials to inform consumers about other resources, such as water and energy, embedded in food waste to stimulate a personal norm that motivates change in behavior. In this study, I emphasize the need to understand the root causes of consumer food waste and exploration of systems level interventions, in combination with education and information interventions that are being commonly used.
ContributorsOpejin, Adenike Kafayat (Author) / Aggarwal, Rimjhim (Thesis advisor) / White, Dave (Thesis advisor) / Garcia, Margret (Committee member) / Merrigan, Kathleen (Committee member) / Arizona State University (Publisher)
Created2022
171625-Thumbnail Image.png
Description
The Water-Energy Nexus (WEN) is a concept that recognizes the interdependence of water and energy systems. The Phoenix metropolitan region (PMA) in Arizona has significant and potentially vulnerable WEN interactions. Future projections indicate that the population will increase and, with it, energy needs, while changes in future water demand are

The Water-Energy Nexus (WEN) is a concept that recognizes the interdependence of water and energy systems. The Phoenix metropolitan region (PMA) in Arizona has significant and potentially vulnerable WEN interactions. Future projections indicate that the population will increase and, with it, energy needs, while changes in future water demand are more uncertain. Climate change will also likely cause a reduction in surface water supply sources. Under these constraints, the expansion of renewable energy technology has the potential to benefit both water and energy systems and increase environmental sustainability by meeting future energy demands while lowering water use and CO2 emissions. However, the WEN synergies generated by renewables have not yet been thoroughly quantified, nor have the related costs been studied and compared to alternative options.Quantifying WEN intercations using numerical models is key to assessing renewable energy synergy. Despite recent advances, WEN models are still in their infancy, and research is needed to improve their accuracy and identify their limitations. Here, I highlight three research needs. First, most modeling efforts have been conducted for large-scale domains (e.g., states), while smaller scales, like metropolitan regions, have received less attention. Second, impacts of adopting different temporal (e.g., monthly, annual) and spatial (network granularity) resolutions on simulation accuracy have not been quantified. Third, the importance of simulating feedbacks between water and energy components has not been analyzed. This dissertation fills these major research gaps by focusing on long-term water allocations and energy dispatch in the metropolitan region of Phoenix. An energy model is developed using the Low Emissions Analysis Platform (LEAP) platform and is subsequently coupled with a water management model based on the Water Evaluation and Planning (WEAP) platform. Analyses are conducted to quantify (1) the value of adopting coupled models instead of single models that are externally coupled, and (2) the accuracy of simulations based on different temporal resolutions of supply and demand and spatial granularity of the water and energy networks. The WEAP-LEAP integrated model is then employed under future climate scenarios to quantify the potential of renewable energy technologies to develop synergies between the PMA's water and energy systems.
ContributorsMounir, Adil (Author) / Mascaro, Giuseppe (Thesis advisor) / White, Dave (Committee member) / Garcia, Margaret (Committee member) / Xu, Tianfang (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2022
154571-Thumbnail Image.png
Description
Drawing from the fields of coastal geography, political ecology, and institutions, this dissertation uses Cape Cod, MA, as a case study, to investigate how chronic and acute climate-related coastal hazards, socio-economic characteristics, and governance and decision-making interact to produce more resilient or at-risk coastal communities. GIS was used to model

Drawing from the fields of coastal geography, political ecology, and institutions, this dissertation uses Cape Cod, MA, as a case study, to investigate how chronic and acute climate-related coastal hazards, socio-economic characteristics, and governance and decision-making interact to produce more resilient or at-risk coastal communities. GIS was used to model the impacts of sea level rise (SLR) and hurricane storm surge scenarios on natural and built infrastructure. Social, gentrification, and tourism indices were used to identify communities differentially vulnerable to coastal hazards. Semi-structured interviews with planners and decision-makers were analyzed to examine hazard mitigation planning.

The results of these assessments demonstrate there is considerable variation in coastal hazard impacts across Cape Cod towns. First, biophysical vulnerability is highly variable with the Outer Cape (e.g., Provincetown) at risk for being temporarily and/or permanently isolated from the rest of the county. In most towns, a Category 1 accounts for the majority of inundation with impacts that will be intensified by SLR. Second, gentrification in coastal communities can create new social vulnerabilities by changing economic bases and disrupting communities’ social networks making it harder to cope. Moreover, higher economic dependence on tourism can amplify towns’ vulnerability with reduced capacities to recover. Lastly, low political will is an important barrier to effective coastal hazard mitigation planning and implementation particularly given the power and independence of town government on Cape Cod. Despite this independence, collaboration will be essential for addressing the trans-boundary effects of coastal hazards and provide an opportunity for communities to leverage their limited resources for long-term hazard mitigation planning.

This research contributes to the political ecology of hazards and vulnerability research by drawing from the field of institutions, by examining how decision-making processes shape vulnerabilities and capacities to plan and implement mitigation strategies. While results from this research are specific to Cape Cod, it demonstrates a broader applicability of the “Hazards, Vulnerabilities, and Governance” framework for assessing other hazards (e.g., floods, fires, etc.). Since there is no “one-size-fits-all” approach to mitigating coastal hazards, examining vulnerabilities and decision-making at local scales is necessary to make resiliency and mitigation efforts specific to communities’ needs.
ContributorsGentile, Lauren Elyse (Author) / Bolin, Bob (Thesis advisor) / Wentz, Elizabeth (Committee member) / White, Dave (Committee member) / York, Abigail (Committee member) / Arizona State University (Publisher)
Created2016
155737-Thumbnail Image.png
Description
Rapid urbanization and population growth occurring in the cities of South Western

United States have led to significant modifications in its environment at local and

regional scales. Both local and regional climate changes are expected to have massive

impacts on the hydrology of Colorado River Basin (CRB), thereby accentuating the need

of study of

Rapid urbanization and population growth occurring in the cities of South Western

United States have led to significant modifications in its environment at local and

regional scales. Both local and regional climate changes are expected to have massive

impacts on the hydrology of Colorado River Basin (CRB), thereby accentuating the need

of study of hydro-climatic impacts on water resource management in this region. This

thesis is devoted to understanding the impact of land use and land cover (LULC) changes

on the local and regional hydroclimate, with the goal to address urban planning issues

and provide guidance for sustainable development.

In this study, three densely populated urban areas, viz. Phoenix, Las Vegas and

Denver in the CRB are selected to capture the various dimensions of the impacts of land

use changes on the regional hydroclimate in the entire CRB. Weather Research and

Forecast (WRF) model, incorporating the latest urban modeling system, is adopted for

regional climate modeling. Two major types of urban LULC changes are studied in this

Thesis: (1) incorporation of urban trees with their radiative cooling effect, tested in

Phoenix metropolitan, and (2) projected urban expansion in 2100 obtained from

Integrated Climate and Land Use Scenarios (ICLUS) developed by the US

Environmental Protection Agency for all three cities.

The results demonstrated prominent nocturnal cooling effect of due to radiative

shading effect of the urban trees for Phoenix reducing urban surface and air temperature

by about 2~9 °C and 1~5 °C respectively and increasing relative humidity by 10~20%

during an mean diurnal cycle. The simulations of urban growth in CRB demonstratedii

nocturnal warming of about 0.36 °C, 1.07 °C, and 0.94 °C 2m-air temperature and

comparatively insignificant change in daytime temperature, with the thermal environment

of Denver being the most sensitive the urban growth. The urban hydroclimatic study

carried out in the thesis assists in identifying both context specific and generalizable

relationships, patterns among the cities, and is expected to facilitate urban planning and

management in local (cities) and regional scales.
ContributorsUpreti, Ruby (Author) / Wang, Zhihua (Thesis advisor) / Vivoni, Enrique R. (Committee member) / Mascaro, Giuseppe (Committee member) / White, Dave (Committee member) / Arizona State University (Publisher)
Created2017