Matching Items (2)
Filtering by

Clear all filters

153116-Thumbnail Image.png
Description
Current hybrid vehicle and/or Fuel Cell Vehicle (FCV) use both FC and an electric system. The sequence of the electric power train with the FC system is intended to achieve both better fuel economies than the conventional vehicles and higher performance. Current hybrids use regenerative braking technology, which converts the

Current hybrid vehicle and/or Fuel Cell Vehicle (FCV) use both FC and an electric system. The sequence of the electric power train with the FC system is intended to achieve both better fuel economies than the conventional vehicles and higher performance. Current hybrids use regenerative braking technology, which converts the vehicles kinetic energy into electric energy instead of wasting it. A hybrid vehicle is much more fuel efficient than conventional Internal Combustion (IC) engine and has less environmental impact The new hybrid vehicle technology with it's advanced with configurations (i.e. Mechanical intricacy, advanced driving modes etc) inflict an intrusion with the existing Thermal Management System (TMS) of the conventional vehicles. This leaves for the opportunity for now thermal management issues which needed to be addressed. Till date, there has not been complete literature on thermal management issued of FC vehicles. The primary focus of this dissertation is on providing better cooling strategy for the advanced power trains. One of the cooling strategies discussed here is the thermo-electric modules.

The 3D Thermal modeling of the FC stack utilizes a Finite Differencing heat approach method augmented with empirical boundary conditions is employed to develop 3D thermal model for the integration of thermoelectric modules with Proton Exchange Membrane fuel cell stack. Hardware-in-Loop was designed under pre-defined drive cycle to obtain fuel cell performance parameters along with anode and cathode gas flow-rates and surface temperatures. The FC model, combined experimental and finite differencing nodal net work simulation modeling approach which implemented heat generation across the stack to depict the chemical composition process. The structural and temporal temperature contours obtained from this model are in compliance with the actual recordings obtained from the infrared detector and thermocouples. The Thermography detectors were set-up through dual band thermography to neutralize the emissivity and to give several dynamic ranges to achieve accurate temperature measurements. The thermocouples network was installed to provide a reference signal.

The model is harmonized with thermo-electric modules with a modeling strategy, which enables optimize better temporal profile across the stack. This study presents the improvement of a 3D thermal model for proton exchange membrane fuel cell stack along with the interfaced thermo-electric module. The model provided a virtual environment using a model-based design approach to assist the design engineers to manipulate the design correction earlier in the process and eliminate the need for costly and time consuming prototypes.
ContributorsRamani, Dilip (Author) / Mayyas, Abdel Ra'Ouf (Thesis advisor) / Hsu, Keng (Committee member) / Madakannan, Arunachalanadar (Committee member) / Arizona State University (Publisher)
Created2014
154103-Thumbnail Image.png
Description
The complicated, unpredictable, and often chaotic hot water usage pattern of typical households severely limits the effectiveness and efficiency of traditional solar hot water heater systems. Similar to large scale concentrating solar power plants, the use of thermal energy storage techniques to store collected solar energy as latent heat has

The complicated, unpredictable, and often chaotic hot water usage pattern of typical households severely limits the effectiveness and efficiency of traditional solar hot water heater systems. Similar to large scale concentrating solar power plants, the use of thermal energy storage techniques to store collected solar energy as latent heat has the potential to improve the efficiency of solar hot water systems. Rather than being used to produce steam to generate electricity, the stored thermal energy would be used to heat water on-demand well after the sun sets. The scope of this thesis was to design, analyze, build, and test a proof of concept prototype for an on-demand solar water heater for residential use with latent heat thermal energy storage. The proof of concept system will be used for future research and can be quickly reconfigured making it ideal for use as a test bed. This thesis outlines the analysis, design, and testing processes used to model, build, and evaluate the performance of the prototype system.

The prototype system developed to complete this thesis was designed using systems engineering principles and consists of several main subsystems. These subsystems include a parabolic trough concentrating solar collector, a phase change material reservoir including heat exchangers, a heat transfer fluid reservoir, and a plumbing system. The system functions by absorbing solar thermal energy in a heat transfer fluid using the solar collector and transferring the absorbed thermal energy to the phase change material for storage. The system was analyzed using a mathematical model created in MATLAB and experimental testing was used to verify that the system functioned as designed. The mathematical model was designed to be adaptable for evaluating different system configurations for future research. The results of the analysis as well as the experimental tests conducted, verify that the proof of concept system is functional and capable of producing hot water using stored thermal energy. This will allow the system to function as a test bed for future research and long-term performance testing to evaluate changes in the performance of the phase change material over time. With additional refinement the prototype system has the potential to be developed into a commercially viable product for use in residential homes.
ContributorsPetre, Andrew (Author) / Rajadas, John N (Thesis advisor) / Madakannan, Arunachalanadar (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2015