Matching Items (4)
155968-Thumbnail Image.png
Description
Cities are hubs for economic and social development, but they are increasingly becoming hotspots of environmental problems and socio-economic inequalities. Because cities result from complex interactions among ecological, social and economic factors, environmental problems and socio-economic inequalities are often spatially interconnected, generating emergent environmental inequity issues due to the unfair

Cities are hubs for economic and social development, but they are increasingly becoming hotspots of environmental problems and socio-economic inequalities. Because cities result from complex interactions among ecological, social and economic factors, environmental problems and socio-economic inequalities are often spatially interconnected, generating emergent environmental inequity issues due to the unfair distribution of environmental quality among socioeconomic groups. Since urban environmental quality is tightly related to the capacity of urban landscapes to provide ecosystem services, optimizing the allocation of ecosystem services within cities is a main goal for moving towards more equitable and sustainable cities. Nevertheless, we often lack the empirical data and specific methods for planning urban landscapes to optimize the provision of ecosystem services. Therefore, the development of knowledge and methods to optimize the provision of ecosystem services is essential for tackling urban environmental problems, reducing environmental inequities, and promoting sustainable cities. The main goal of this dissertation is to generate actionable knowledge for helping decision-makers to optimize the allocation of urban vegetation for reducing environmental inequities through the provision of ecosystem services. The research uses the city of Santiago de Chile as a case study from a Latin-American city. To achieve this goal, I framed my dissertation in four linked research chapters, each of them providing methodological approaches to help link environmental inequity problems with the development of urban planning interventions promoting an equitable provision of urban ecosystem services. These chapters are specifically aimed at providing actionable knowledge for: (1) Identifying the level, distribution, and spatial scales at which environmental inequities are more relevant; (2) Identifying the areas and administrative units where environmental inequities interventions should be prioritized; (3) Identifying optimal areas to allocate vegetation for increasing the provision of urban ecosystem services; (4) Evaluating the role that planned urban vegetation may have in the long-term provision of ecosystem services by natural remnants within the urban landscape. Thus, this dissertation contributes to urban sustainability science by proposing methods and frameworks to address urban environmental inequities through the provision of ecosystem services, but it also provides place-based information that can be readily used for planning urban vegetation in Santiago.
ContributorsFernández, Ignacio C., Ph.D (Author) / Wu, Jingle (Thesis advisor) / Perrings, Charles (Committee member) / Sala, Osvaldo (Committee member) / Simonetti, Javier (Committee member) / Arizona State University (Publisher)
Created2017
154644-Thumbnail Image.png
Description
During summer 2014, a study was conducted as part of the Landscape Architecture Foundation Case Study Investigation to analyze features of three sustainably designed landscapes. Each project was located in a southwest desert city: Civic Space Park in Phoenix, AZ, the Pete V. Domenici US Courthouse Sustainable Landscape Retrofit in

During summer 2014, a study was conducted as part of the Landscape Architecture Foundation Case Study Investigation to analyze features of three sustainably designed landscapes. Each project was located in a southwest desert city: Civic Space Park in Phoenix, AZ, the Pete V. Domenici US Courthouse Sustainable Landscape Retrofit in Albuquerque, NM, and George "Doc" Cavalliere Park in Scottsdale, AZ. The principal components of each case study were performance benefits that quantified ongoing ecosystem services. Performance benefits were developed from data provided by the designers and collected by the research team. The functionality of environmental, social, and economic sustainable features was evaluated. In southwest desert cities achieving performance benefits such as microclimate cooling often come at the cost of water conservation. In each of these projects such tradeoffs were balanced by prioritizing the project goals and constraints.

During summer 2015, a study was conducted to characterize effects of tree species and shade structures on outdoor human thermal comfort under hot, arid conditions. Motivating the research was the hypothesis that tree species and shade structures will vary in their capacity to improve thermal comfort due to their respective abilities to attenuate solar radiation. Micrometeorological data was collected in full sun and under shade of six landscape tree species and park ramadas in Phoenix, AZ during pre-monsoon summer afternoons. The six landscape tree species included: Arizona ash (Fraxinus velutina Torr.), Mexican palo verde (Parkinsonia aculeata L.), Aleppo pine (Pinus halepensis Mill.), South American mesquite (Prosopis spp. L.), Texas live oak (Quercus virginiana for. fusiformis Mill.), and Chinese elm (Ulmus parvifolia Jacq.). Results showed that the tree species and ramadas were not similarly effective at improving thermal comfort, represented by physiologically equivalent temperature (PET). The difference between PET in full sun and under shade was greater under Fraxinus and Quercus than under Parkinsonia, Prosopis, and ramadas by 2.9-4.3 °C. Radiation was a significant driver of PET (p<0.0001, R2=0.69) and with the exception of ramadas, lower radiation corresponded with lower PET. Variations observed in this study suggest selecting trees or structures that attenuate the most solar radiation is a potential strategy for optimizing PET.
ContributorsColter, Kaylee (Author) / Martin, Chris (Thesis advisor) / Coseo, Paul (Committee member) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2016
148045-Thumbnail Image.png
Description

As part of Arizona State University’s net-zero carbon initiative, 1000 mesquite trees were planted on a vacant plot of land at West Campus to sequester carbon from the atmosphere. Urban forestry is typically a method of carbon capture in temperate areas, but it is hypothesized that the same principle can

As part of Arizona State University’s net-zero carbon initiative, 1000 mesquite trees were planted on a vacant plot of land at West Campus to sequester carbon from the atmosphere. Urban forestry is typically a method of carbon capture in temperate areas, but it is hypothesized that the same principle can be employed in arid regions as well. To test this hypothesis a carbon model was constructed using the pools and fluxes measured at the Carbon sink and learning forest at West Campus. As an ideal, another carbon model was constructed for the mature mesquite forest at the Hassayampa River Preserve to project how the carbon cycle at West Campus could change over time as the forest matures. The results indicate that the West Campus plot currently functions as a carbon source while the site at the Hassayampa river preserve currently functions as a carbon sink. Soil composition at both sites differ with inorganic carbon contributing to the largest percentage at West Campus, and organic carbon at Hassayampa. Predictive modeling using biomass accumulation estimates and photosynthesis rates for the Carbon Sink Forest at West Campus both predict approximately 290 metric tons of carbon sequestration after 30 years. Modeling net ecosystem exchange predicts that the West Campus plot will begin to act as a carbon sink after 33 years.

ContributorsLiddle, David Mohacsy (Author) / Ball, Becky (Thesis director) / Nishimura, Joel (Committee member) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
The City of Peoria, AZ approached Project Cities and the 2021 MSUS cohort for research on the feasibility, and challenges, of adopting a Community Forestry Program (CFP). The team was asked to evaluate Peoria’s potential for canopy growth and plan adoption by researching forestry or shade programs in cities with

The City of Peoria, AZ approached Project Cities and the 2021 MSUS cohort for research on the feasibility, and challenges, of adopting a Community Forestry Program (CFP). The team was asked to evaluate Peoria’s potential for canopy growth and plan adoption by researching forestry or shade programs in cities with similar climates, as well as by conducting citizen outreach to determine the community mandate for a CFP. This process includes identifying the specific barriers and opportunities regarding implementation. Research is being conducted through peer reviewed articles and interviews with shade or forestry program officials; citizen outreach is being conducted through surveys and focus groups. These results will be compiled and presented to the City of Peoria to provide recommendations moving forward. Peoria will likely benefit from a comprehensive CFP, and this program will help reduce inequalities within the city, enhance urban form, promote walkability, and increase biodiversity within the urban area. This will also highlight that Peoria is dedicated to becoming a forerunner in the arena of urban planning, the intersection of social and environmental sustainability, and human health. Through their efforts in this sphere, Peoria can emerge as an example, and provide motivation, for other cities that are interested in pursuing a similar program. If implemented, the CFP will influence the development of Peoria for years to come.
Created2021-04-28