Matching Items (4)
151996-Thumbnail Image.png
Description
Despite the arid climate of Maricopa County, Arizona, vector-borne diseases have presented significant health challenges to the residents and public health professionals of Maricopa County in the past, and will continue to do so in the foreseeable future. Currently, West Nile virus is the only mosquitoes-transmitted disease actively, and natively,

Despite the arid climate of Maricopa County, Arizona, vector-borne diseases have presented significant health challenges to the residents and public health professionals of Maricopa County in the past, and will continue to do so in the foreseeable future. Currently, West Nile virus is the only mosquitoes-transmitted disease actively, and natively, transmitted throughout the state of Arizona. In an effort to gain a more complete understanding of the transmission dynamics of West Nile virus this thesis examines human, vector, and environment interactions as they exist within Maricopa County. Through ethnographic and geographic information systems research methods this thesis identifies 1) the individual factors that influence residents' knowledge and behaviors regarding mosquitoes, 2) the individual and regional factors that influence residents' knowledge of mosquito ecology and the spatial distribution of local mosquito populations, and 3) the environmental, demographic, and socioeconomic factors that influence mosquito abundance within Maricopa County. By identifying the factors that influence human-vector and vector-environment interactions, the results of this thesis may influence current and future educational and mosquito control efforts throughout Maricopa County.
ContributorsKunzweiler, Colin (Author) / Boone, Christopher (Thesis advisor) / Wutich, Amber (Committee member) / Brewis-Slade, Alexandra (Committee member) / Arizona State University (Publisher)
Created2013
147925-Thumbnail Image.png
Description

Mosquitoes are estimated to kill roughly 700,000 people each year through the transmission of vector-borne diseases. Vector control via insecticides is a widely used method in order to combat the spread of mosquito populations; however, this comes at a cost. Resistance to insecticides has the potential to increase vector-borne disease

Mosquitoes are estimated to kill roughly 700,000 people each year through the transmission of vector-borne diseases. Vector control via insecticides is a widely used method in order to combat the spread of mosquito populations; however, this comes at a cost. Resistance to insecticides has the potential to increase vector-borne disease rates. Aedes aegypti is an invasive mosquito species in Arizona and is a known potential vector for a variety of infectious diseases including dengue, chikungunya, Zika, and yellow fever. In contrast to many other mosquito species Ae. aegypti mosquito eggs can undergo quiescence, an active state of dormancy, over long periods of time. Variation in quiescent periods correlates to climatic rainfall alterations and can ultimately influence hatching and mating between multiple generations. I have studied the effect of quiescence on larvicide (i.e., temephos) susceptibility using mosquito eggs collected from a susceptible lab strain and stored under optimal temperature and humidity conditions. After undergoing various quiescent periods (3, 7, 14, 28, 84, and 182 days), the experimental eggs as well as 7-day quiescent control eggs were hatched and reared to 3rd instar larvae. Temephos susceptibility was tested using the WHO bioassay procedure at lethal concentration (LC) 20, LC50, LC80, diagnostic dose (twice LC99), plus an untreated control. Each concentration dose was replicated four times with 20 larvae each. The 3-day experimental group was excluded from analysis because the mortality was significantly lower than the 7-day for both the experimental and control groups. The 3 day experimental eggs displayed decreased mortality which did not align with the hypothesis, as the quiescence period elongates under optimal conditions, susceptibility to insecticides decreases, and this could have likely resulted from unintentional selection for increased fitness and faster developing eggs because the larvae that developed to 3rd instar first were those used for larvicide testing. ANOVA testing demonstrates variability in the LC80 experimental group which suggests the need for further investigation into high dose temephos concentrations. For the experimental LC20 linear regression, there were significant differences in mortality. The results indicate mortality gradually decreases when the quiescence period elongates, therefore there are significant differences in insecticide susceptibility when quiescence is 182 days (or longer), compared to when quiescence is 7 days. Further investigation into field mosquito’s genetic diversity, insecticide resistance profile, and environmental conditions should be considered.

ContributorsKayce, Brenna Jean (Author) / Huijben, Silvie (Thesis director) / Paaijmans, Krijn (Committee member) / Jensen, Brook (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Aedes aegypti are vectors for common arthropod-borne-diseases (arboviruses) such as Zika, yellow fever, dengue, and chikungunya, which are of significant public health concern. The management of vectors is critical to mitigating the incidence, reemergence, and expansion of these diseases. Vector control has been complicated by the emergence of insecticide resistance

Aedes aegypti are vectors for common arthropod-borne-diseases (arboviruses) such as Zika, yellow fever, dengue, and chikungunya, which are of significant public health concern. The management of vectors is critical to mitigating the incidence, reemergence, and expansion of these diseases. Vector control has been complicated by the emergence of insecticide resistance within vectors, which threatens the effectiveness of control efforts. Furthermore, vector management is also complicated by the interaction between insecticide susceptibility and abiotic factors, such as temperature. While it is well-documented that environmental factors affect insecticide susceptibility, it is poorly understood how insecticide resistant vectors with different genetic backgrounds respond to insecticides at different temperatures. This study aims to establish the relationship between deltamethrin susceptibility at varying temperatures across Ae. aegypti lines that differ in their susceptibility due to knockdown resistance (kdr) mechanism. This was done through exposures using the “WHO tube test method” using simulated climate environments (22°C, 27 °C, and 32 °C) on mosquitoes of varying resistance at 1016 and homozygous resistance at 1534. This experiment is still ongoing. This study found that IICC was the most resistant genotype, VVCC the least resistant, and VICC and intermediate. There was found to be no statistically significant relationship between temperature and insecticide susceptibility across kdr genotypes.

ContributorsAin, Joshua (Author) / Paaijmans, Krijn (Thesis director) / Huijben, Silvie (Committee member) / Jensen, Brook (Committee member) / Kalmouni, Joshua (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

The majority of the public is not aware that common objects in their backyard can be mosquito breeding sites, thus leading to an increase in mosquitoes and mosquito-borne diseases affecting humans and animals during the peak seasons. An engaging app that instructs people of all ages how to identify, prevent,

The majority of the public is not aware that common objects in their backyard can be mosquito breeding sites, thus leading to an increase in mosquitoes and mosquito-borne diseases affecting humans and animals during the peak seasons. An engaging app that instructs people of all ages how to identify, prevent, and eliminate breeding sites may be of use in increasing positive behavioral changes in people, and therefore reducing available breeding sites for mosquitoes. The Embodied Games Lab in Psychology at Arizona State University created an educational game phone app using machine learning to teach students how to identify and eliminate mosquito breeding sites. Skeeter Breeder is an interactive, educational game that teaches participants about potential mosquito breeding sites and how to eliminate them from the immediate environment as documented by smartphone imagery. Currently, there is no educational game phone app that uses machine learning to teach this topic. This Thesis describes a pilot study focused on educating about common mosquito breeding sites and increasing the knowledge of 5th graders on the topic through an agentic (by taking their own pictures), engaging (game-like platform with rewards), and interactive (receiving immediate feedback on pictures) game developed from scratch at ASU.

ContributorsBharti, Aarushi (Author) / Johnson-Glenberg, Mina (Thesis director) / Huijben, Silvie (Committee member) / Barrett, The Honors College (Contributor) / Tech Entrepreneurship & Mgmt (Contributor) / Computing and Informatics Program (Contributor)
Created2023-05