Matching Items (4)
Filtering by

Clear all filters

157176-Thumbnail Image.png
Description
Gallium Nitride (GaN) based Current Aperture Vertical Electron Transistors (CAVETs) present many appealing qualities for applications in high power, high frequency devices. The wide bandgap, high carrier velocity of GaN make it ideal for withstanding high electric fields and supporting large currents. The vertical topology of the CAVET allows for

Gallium Nitride (GaN) based Current Aperture Vertical Electron Transistors (CAVETs) present many appealing qualities for applications in high power, high frequency devices. The wide bandgap, high carrier velocity of GaN make it ideal for withstanding high electric fields and supporting large currents. The vertical topology of the CAVET allows for more efficient die area utilization, breakdown scaling with the height of the device, and burying high electric fields in the bulk where they will not charge interface states that can lead to current collapse at higher frequency.

Though GaN CAVETs are promising new devices, they are expensive to develop due to new or exotic materials and processing steps. As a result, the accurate simulation of GaN CAVETs has become critical to the development of new devices. Using Silvaco Atlas 5.24.1.R, best practices were developed for GaN CAVET simulation by recreating the structure and results of the pGaN insulated gate CAVET presented in chapter 3 of [8].

From the results it was concluded that the best simulation setup for transfer characteristics, output characteristics, and breakdown included the following. For methods, the use of Gummel, Block, Newton, and Trap. For models, SRH, Fermi, Auger, and impact selb. For mobility, the use of GANSAT and manually specified saturation velocity and mobility (based on doping concentration). Additionally, parametric sweeps showed that, of those tested, critical CAVET parameters included channel mobility (and thus doping), channel thickness, Current Blocking Layer (CBL) doping, gate overlap, and aperture width in rectangular devices or diameter in cylindrical devices.
ContributorsWarren, Andrew (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2019
152484-Thumbnail Image.png
Description
In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD

In this dissertation, the interface chemistry and electronic structure of plasma-enhanced atomic layer deposited (PEALD) dielectrics on GaN are investigated with x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). Three interrelated issues are discussed in this study: (1) PEALD dielectric growth process optimization, (2) interface electronic structure of comparative PEALD dielectrics on GaN, and (3) interface electronic structure of PEALD dielectrics on Ga- and N-face GaN. The first study involved an in-depth case study of PEALD Al2O3 growth using dimethylaluminum isopropoxide, with a special focus on oxygen plasma effects. Saturated and self-limiting growth of Al2O3 films were obtained with an enhanced growth rate within the PEALD temperature window (25-220 ºC). The properties of Al2O3 deposited at various temperatures were characterized to better understand the relation between the growth parameters and film properties. In the second study, the interface electronic structures of PEALD dielectrics on Ga-face GaN films were measured. Five promising dielectrics (Al2O3, HfO2, SiO2, La2O3, and ZnO) with a range of band gap energies were chosen. Prior to dielectric growth, a combined wet chemical and in-situ H2/N2 plasma clean process was employed to remove the carbon contamination and prepare the surface for dielectric deposition. The surface band bending and band offsets were measured by XPS and UPS for dielectrics on GaN. The trends of the experimental band offsets on GaN were related to the dielectric band gap energies. In addition, the experimental band offsets were near the calculated values based on the charge neutrality level model. The third study focused on the effect of the polarization bound charge of the Ga- and N-face GaN on interface electronic structures. A surface pretreatment process consisting of a NH4OH wet chemical and an in-situ NH3 plasma treatment was applied to remove carbon contamination, retain monolayer oxygen coverage, and potentially passivate N-vacancy related defects. The surface band bending and polarization charge compensation of Ga- and N-face GaN were investigated. The surface band bending and band offsets were determined for Al2O3, HfO2, and SiO2 on Ga- and N-face GaN. Different dielectric thicknesses and post deposition processing were investigated to understand process related defect formation and/or reduction.
ContributorsYang, Jialing (Author) / Nemanich, Robert J (Thesis advisor) / Chen, Tingyong (Committee member) / Peng, Xihong (Committee member) / Ponce, Fernando (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2014
155162-Thumbnail Image.png
Description
Gallium Nitride (GaN) based microelectronics technology is a fast growing and most exciting semiconductor technology in the fields of high power and high frequency electronics. Excellent electrical properties of GaN such as high carrier concentration and high carrier motility makes GaN based high electron mobility transistors (HEMTs) a preferred choice

Gallium Nitride (GaN) based microelectronics technology is a fast growing and most exciting semiconductor technology in the fields of high power and high frequency electronics. Excellent electrical properties of GaN such as high carrier concentration and high carrier motility makes GaN based high electron mobility transistors (HEMTs) a preferred choice for RF applications. However, a very high temperature in the active region of the GaN HEMT leads to a significant degradation of the device performance by effecting carrier mobility and concentration. Thus, thermal management in GaN HEMT in an effective manner is key to this technology to reach its full potential.

In this thesis, an electro-thermal model of an AlGaN/GaN HEMT on a SiC substrate is simulated using Silvaco (Atlas) TCAD tools. Output characteristics, current density and heat flow at the GaN-SiC interface are key areas of analysis in this work. The electrical characteristics show a sharp drop in drain currents for higher drain voltages. Temperature profile across the device is observed. At the interface of GaN-SiC, there is a sharp drop in temperature indicating a thermal resistance at this interface. Adding to the existing heat in the device, this difference heat is reflected back into the device, further increasing the temperatures in the active region. Structural changes such as GaN micropits, were introduced at the GaN-SiC interface along the length of the device, to make the heat flow smooth rather than discontinuous. With changing dimensions of these micropits, various combinations were tried to reduce the temperature and enhance the device performance. These GaN micropits gave effective results by reducing heat in active region, by spreading out the heat on to the sides of the device rather than just concentrating right below the hot spot. It also helped by allowing a smooth flow of heat at the GaN-SiC interface. There was an increased peak current density in the active region of the device contributing to improved electrical characteristics. In the end, importance of thermal management in these high temperature devices is discussed along with future prospects and a conclusion of this thesis.
ContributorsSuri, Suraj (Author) / Zhao, Yuji (Thesis advisor) / Vasileska, Dragika (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2016
161899-Thumbnail Image.png
Description
Wide bandgap semiconductors, also known as WBG semiconductors are materials which have larger bandgaps than conventional semiconductors such as Si or GaAs. They permit devices to operate at much higher voltages, frequencies and temperatures. They are the key material used to make LEDs, lasers, radio frequency applications, military applications, and

Wide bandgap semiconductors, also known as WBG semiconductors are materials which have larger bandgaps than conventional semiconductors such as Si or GaAs. They permit devices to operate at much higher voltages, frequencies and temperatures. They are the key material used to make LEDs, lasers, radio frequency applications, military applications, and power electronics. Their intrinsic qualities make them promising for next-generation devices for general semiconductor use. Their ability to handle higher power density is particularly attractive for attempts to sustain Moore's law, as conventional technologies appear to be reaching a bottleneck. Apart from WBG materials, ultra-wide bandgap (UWBG) materials, such as Ga2O3, AlN, diamond, or BN, are also attractive since they have even more extreme properties. Although this field is relatively new, which still remains a lot of effort to study and investigate, people can still expect that these materials could be the main characters for more advanced applications in the near future. In the dissertation, three topics with power devices made by WBG or UWBG semiconductors were introduced. In chapter 1, a generally background knowledge introduction is given. This helps the reader to learn current research focuses. In chapter 2, a comprehensive study of temperature-dependent characteristics of Ga2O3 SBDs with highly-doped substrate is demonstrated. A modified thermionic emission model over an inhomogeneous barrier with a voltage-dependent barrier height is investigated. Besides, the mechanism of surface leakage current is also discussed. These results are beneficial for future developments of low-loss β-Ga2O3 electronics and optoelectronics. In chapter 3, vertical GaN Schottky barrier diodes (SBDs) with floating metal rings (FMRs) as edge termination structures on bulk GaN substrates was introduced. This work represents a useful reference for the FMR termination design for GaN power devices. In chapter 4, AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MISHEMTs) fabricated on Si substrates with a 10 nm boron nitride (BN) layer as gate dielectric was demonstrated. The material characterization was investigated by X-ray photoelectric spectroscopy (XPS) and UV photoelectron spectroscopy (UPS). And the gate leakage current mechanisms were also investigated by temperature-dependent current-voltage measurements. Although still in its infancy, past and projected future progress of electronic designs will ultimately achieve this very goal that WBG and UWBG semiconductors will be indispensable for today and future’s science, technologies and society.
ContributorsYang, Tsung-Han (Author) / Zhao, Yuji (Thesis advisor) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Nemanich, Robert (Committee member) / Arizona State University (Publisher)
Created2021