Matching Items (3)
Filtering by

Clear all filters

189345-Thumbnail Image.png
Description
The current work aims to understand the influence of particles on scalar transport in particle-laden turbulent jets using point-particle direct numerical simulations (DNS). Such turbulence phenomena are observed in many applications, such as aircraft and rocket engines (e.g., engines operating in dusty environments and when close to the surface) and

The current work aims to understand the influence of particles on scalar transport in particle-laden turbulent jets using point-particle direct numerical simulations (DNS). Such turbulence phenomena are observed in many applications, such as aircraft and rocket engines (e.g., engines operating in dusty environments and when close to the surface) and geophysical flows (sediment-laden rivers discharging nutrients into the oceans), etc.This thesis looks at systematically understanding the fundamental interplay between (1) fluid turbulence, (2) inertial particles, and (3) scalar transport. This work considers a temporal jet of Reynolds number of 5000 filled with the point-particles and the influence of Stokes number (St). Three Stokes numbers, St = 1, 7.5, and 20, were considered for the current work. The simulations were solved using the NGA solver, which solves the Navier-Stokes, advection-diffusion, and particle transport equations. The statistical analysis of the mean and turbulence quantities, along with the Reynolds stresses, are estimated for the fluid and particle phases throughout the domain. The observations do not show a significant influence of St in the mean flow evolution of fluid, scalar, and particle phases. The scalar mixture fraction variance and the turbulent kinetic energy (TKE) increase slightly for the St = 1 case, compared to the particle-free and higher St cases, indicating that an optimal St exists for which the scalar variation increases. The current preliminary study establishes that the scalar variance is influenced by particles under the optimal particle St. Directions for future studies based on the current observations are presented.
ContributorsPaturu, Venkata Sai Sushant (Author) / Pathikonda, Gokul (Thesis advisor) / Kasbaoui, Mohamed Houssem (Committee member) / Kim, Jeonglae (Committee member) / Prabhakaran, Prasanth (Committee member) / Arizona State University (Publisher)
Created2023
153785-Thumbnail Image.png
Description
Scientists have used X-rays to study biological molecules for nearly a century. Now with the X-ray free electron laser (XFEL), new methods have been developed to advance structural biology. These new methods include serial femtosecond crystallography, single particle imaging, solution scattering, and time resolved techniques.

The XFEL is characterized by high

Scientists have used X-rays to study biological molecules for nearly a century. Now with the X-ray free electron laser (XFEL), new methods have been developed to advance structural biology. These new methods include serial femtosecond crystallography, single particle imaging, solution scattering, and time resolved techniques.

The XFEL is characterized by high intensity pulses, which are only about 50 femtoseconds in duration. The intensity allows for scattering from microscopic particles, while the short pulses offer a way to outrun radiation damage. XFELs are powerful enough to obliterate most samples in a single pulse. While this allows for a “diffract and destroy” methodology, it also requires instrumentation that can position microscopic particles into the X-ray beam (which may also be microscopic), continuously renew the sample after each pulse, and maintain sample viability during data collection.

Typically these experiments have used liquid microjets to continuously renew sample. The high flow rate associated with liquid microjets requires large amounts of sample, most of which runs to waste between pulses. An injector designed to stream a viscous gel-like material called lipidic cubic phase (LCP) was developed to address this problem. LCP, commonly used as a growth medium for membrane protein crystals, lends itself to low flow rate jetting and so reduces the amount of sample wasted significantly.

This work discusses sample delivery and injection for XFEL experiments. It reviews the liquid microjet method extensively, and presents the LCP injector as a novel device for serial crystallography, including detailed protocols for the LCP injector and anti-settler operation.
ContributorsJames, Daniel (Author) / Spence, John (Thesis advisor) / Weierstall, Uwe (Committee member) / Kirian, Richard (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2015
153166-Thumbnail Image.png
Description
ABSTRACT

X-Ray crystallography and NMR are two major ways of achieving atomic

resolution of structure determination for macro biomolecules such as proteins. Recently, new developments of hard X-ray pulsed free electron laser XFEL opened up new possibilities to break the dilemma of radiation dose and spatial resolution in diffraction imaging by outrunning

ABSTRACT

X-Ray crystallography and NMR are two major ways of achieving atomic

resolution of structure determination for macro biomolecules such as proteins. Recently, new developments of hard X-ray pulsed free electron laser XFEL opened up new possibilities to break the dilemma of radiation dose and spatial resolution in diffraction imaging by outrunning radiation damage with ultra high brightness femtosecond X-ray pulses, which is so short in time that the pulse terminates before atomic motion starts. A variety of experimental techniques for structure determination of macro biomolecules is now available including imaging of protein nanocrystals, single particles such as viruses, pump-probe experiments for time-resolved nanocrystallography, and snapshot wide- angle x-ray scattering (WAXS) from molecules in solution. However, due to the nature of the "diffract-then-destroy" process, each protein crystal would be destroyed once

probed. Hence a new sample delivery system is required to replenish the target crystal at a high rate. In this dissertation, the sample delivery systems for the application of XFELs to biomolecular imaging will be discussed and the severe challenges related to the delivering of macroscopic protein crystal in a stable controllable way with minimum waste of sample and maximum hit rate will be tackled with several different development of injector designs and approaches. New developments of the sample delivery system such as liquid mixing jet also opens up new experimental methods which gives opportunities to study of the chemical dynamics in biomolecules in a molecular structural level. The design and characterization of the system will be discussed along with future possible developments and applications. Finally, LCP injector will be discussed which is critical for the success in various applications.
ContributorsWang, Dingjie (Author) / Spence, John CH (Thesis advisor) / Weierstall, Uwe (Committee member) / Schmidt, Kevin (Committee member) / Fromme, Petra (Committee member) / Ozkan, Banu (Committee member) / Arizona State University (Publisher)
Created2014