Matching Items (405)
Filtering by

Clear all filters

ContributorsSchildkret, David (Conductor) / Chamber Singers (Performer) / ASU Library. Music Library (Publisher)
Created2018-02-10
173652-Thumbnail Image.png
Description

Richard Woltereck first described the concept of Reaktionsnorm (norm of reaction) in his 1909 paper 'Weitere experimentelle Untersuchungen uber Art-veranderung, speziell uber das Wesen quantitativer Artunterschiede bei Daphniden' ('Further investigations of type variation, specifically concerning the nature of quantitative differences between varieties of Daphnia'). This concept refers to the ways

Richard Woltereck first described the concept of Reaktionsnorm (norm of reaction) in his 1909 paper 'Weitere experimentelle Untersuchungen uber Art-veranderung, speziell uber das Wesen quantitativer Artunterschiede bei Daphniden' ('Further investigations of type variation, specifically concerning the nature of quantitative differences between varieties of Daphnia'). This concept refers to the ways in which the environment can alter the development of an organism, and its adult characteristics. Woltereck conceived of the Reaktionsnorm as the full range of potentialities latent in a single genotype, evocable by the environmental circumstances of a developing organism. Biologists used variants of Woltereck's concept of Reaktionsnorm, often called the reaction norm or norm of reaction, throughout the twentieth century in attempts to explain how developmental responses to the environment can evolve, and even alter the tempo and direction of evolutionary change.

Created2012-09-06
171588-Thumbnail Image.png
Description
Embryonic and juvenile development consist of a series of complex and rapid changes driven by a suite of crucially timed developmental cues within the cell. The developmental process begins at the moment of zygote activation, “jump-started” by maternal factors such as mRNA and proteins until transcription can be zygotically-driven. Regulation

Embryonic and juvenile development consist of a series of complex and rapid changes driven by a suite of crucially timed developmental cues within the cell. The developmental process begins at the moment of zygote activation, “jump-started” by maternal factors such as mRNA and proteins until transcription can be zygotically-driven. Regulation of transcription initiation plays a crucial role in this process, as minute changes in the timing, density, and characteristics of gene expression can have drastic effects on the zygote’s development. Specific promoter elements can be linked to different patterns of transcription, driving both ubiquitous and sharply regulated gene expression, thus forming the basis for the time-sensitive developmental processes. In order to better understand the genes expressed during different stages of development and the impact of promoter elements on transcription patterns and transcript concentrations within the cell, I created a Gene Expression and Promoter Atlas in two species within the cryptic species complex, Daphnia pulex. I surveyed five embryonic and two juvenile developmental stages in both a North American and mitochondrially European Daphnia pulex utilizing developmental landmarks to visually stages embryos. A total of 17,993 genes were identified in the European species and 15,295 were identified in the North American species, with 11,551 orthologs identified between the two. I utilized the transcription start site (TSS) profiling method STRIPE-seq to identify promoter motifs and RNA-seq to survey mRNA concentration at each stage, generating a wealth of genetic data. The methodology for library construction and the dataset generated therein provide an informative basis for further comparative developmental studies and the elucidation of full gene functionality in an emerging model organism.
ContributorsWalls, Sarah (Author) / Lynch, Michael (Thesis advisor) / Raborn, R. Taylor (Committee member) / Mangoni, Marco (Committee member) / Harris, Robin (Committee member) / Arizona State University (Publisher)
Created2022
Description

The transcriptome of an organism is a collection of the various messenger RNAs that the genes of an organism produce. As the level of gene expression is different between different tissues of an organism, understanding the transcriptome serves as a way to better understand the differences between the functions and

The transcriptome of an organism is a collection of the various messenger RNAs that the genes of an organism produce. As the level of gene expression is different between different tissues of an organism, understanding the transcriptome serves as a way to better understand the differences between the functions and abilities of tissues and cells in an organism. This understanding of the transcriptome can aid further research in targeted disease treatments and indentifying new biomarkers. This study aims to gather the transcriptome from various tissues of the organism Daphnia pulex. This will be done by using a combination of single cell RNA sequencing (scRNA-seq), which involves the isolation and sequencing of single cells, and single nuclei RNA sequencing (snRNA-seq), which involves the isolation and sequencing of single nuclei. Here we show the viability of isolating single cells and single nuclei from various Daphnia pulex tissues using different techniques and enzymes including trypLE, trypsin EDTA, accutase, etc by using microscopy and automatic cell counting. The results show that each tissue is best isolated using different techniques.

ContributorsShahriari, Ryan (Author) / Lynch, Michael (Thesis director) / Ye, Zhiqiang (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
ContributorsGlenn, Erica (Conductor) / Evans, Bartlett R. (Conductor) / Oh, Eun-Mi (Conductor) / Thompson, Jason D. (Conductor) / Schildkret, David (Conductor) / Concert Choir (Performer) / Arizona Statesmen (Performer) / Women's Chorus (Performer) / Gospel Choir (Performer) / Barrett Choir (Performer) / Chamber Singers (Performer) / Choral Union (Performer) / ASU Library. Music Library (Publisher)
Created2017-11-30
ContributorsUniversity Choirs (Performer) / ASU Library. Music Library (Publisher)
Created2000-11-16
ContributorsSchildkret, David (Conductor) / White, Jamilyn (Performer) / Krison, Danielle (Performer) / Barefield, Robert (Performer) / FitzPatrick, Carole (Performer) / Chamber Singers (Performer) / Choral Union (Performer) / Symphonic Chorale (Performer) / University Symphony Orchestra (Performer) / ASU Library. Music Library (Publisher)
Created2007-04-26
ContributorsLyne, Gregory K. (Performer) / Stutzman, Gina (Performer) / Woodgate, Lyn (Performer) / Cornner, Charles B. (Performer) / Rozukalns, Andris L. (Performer) / Women's Choir (Performer) / University Choir (Performer) / ASU Library. Music Library (Publisher)
Created1996-11-24
ContributorsCherland, Carl (Performer) / Fuller, Charles L. (Performer) / O'Brien, Robert (Performer) / Hooper, Wm. John (Performer) / Graduate Chorale (Performer) / Recital Chorale (Performer) / ASU Library. Music Library (Publisher)
Created1987-10-01
ContributorsRoueche, Michelle (Performer) / Partin, Darrell (Performer) / Wiest-Parthun, Karen (Performer) / Harvison, Emery (Performer) / Hernandez, Rene (Performer) / Foley, Laura (Performer) / Women's Choir (Performer) / ASU Library. Music Library (Publisher)
Created1994-04-21