Matching Items (657)
Filtering by

Clear all filters

ContributorsWasbotten, Leia (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-30
151635-Thumbnail Image.png
Description
Libby Larsen is one of the most performed and acclaimed composers today. She is a spirited, compelling, and sensitive composer whose music enhances the poetry of America's most prominent authors. Notable among her works are song cycles for soprano based on the poetry of female writers, among them novelist and

Libby Larsen is one of the most performed and acclaimed composers today. She is a spirited, compelling, and sensitive composer whose music enhances the poetry of America's most prominent authors. Notable among her works are song cycles for soprano based on the poetry of female writers, among them novelist and poet Willa Cather (1873-1947). Larsen has produced two song cycles on works from Cather's substantial output of fiction: one based on Cather's short story, "Eric Hermannson's Soul," titled Margaret Songs: Three Songs from Willa Cather (1996); and later, My Antonia (2000), based on Cather's novel of the same title. In Margaret Songs, Cather's poetry and short stories--specifically the character of Margaret Elliot--combine with Larsen's unique compositional style to create a surprising collaboration. This study explores how Larsen in these songs delves into the emotional and psychological depths of Margaret's character, not fully formed by Cather. It is only through Larsen's music and Cather's poetry that Margaret's journey through self-discovery and love become fully realized. This song cycle is a glimpse through the eyes of two prominent female artists on the societal pressures placed upon Margaret's character, many of which still resonate with women in today's culture. This study examines the work Margaret Songs by discussing Willa Cather, her musical influences, and the conditions surrounding the writing of "Eric Hermannson's Soul." It looks also into Cather's influence on Libby Larsen and the commission leading to Margaret Songs. Finally, a description of the musical, dramatic, and textual content of the songs completes this interpretation of the interactions of Willa Cather, Libby Larsen, and the character of Margaret Elliot.
ContributorsMcLain, Christi Marie (Author) / FitzPatrick, Carole (Thesis advisor) / Dreyfoos, Dale (Committee member) / Holbrook, Amy (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2013
151660-Thumbnail Image.png
Description
Puerto Rico has produced many important composers who have contributed to the musical culture of the nation during the last 200 years. However, a considerable amount of their music has proven to be difficult to access and may contain numerous errors. This research project intends to contribute to the accessibility

Puerto Rico has produced many important composers who have contributed to the musical culture of the nation during the last 200 years. However, a considerable amount of their music has proven to be difficult to access and may contain numerous errors. This research project intends to contribute to the accessibility of such music and to encourage similar studies of Puerto Rican music. This study focuses on the music of Héctor Campos Parsi (1922-1998), one of the most prominent composers of the 20th century in Puerto Rico. After an overview of the historical background of music on the island and the biography of the composer, four works from his art song repertoire are given for detailed examination. A product of this study is the first corrected edition of his cycles Canciones de Cielo y Agua, Tres Poemas de Corretjer, Los Paréntesis, and the song Majestad Negra. These compositions date from 1947 to 1959, and reflect both the European and nationalistic writing styles of the composer during this time. Data for these corrections have been obtained from the composer's manuscripts, published and unpublished editions, and published recordings. The corrected scores are ready for publication and a compact disc of this repertoire, performed by soprano Melliangee Pérez and the author, has been recorded to bring to life these revisions. Despite the best intentions of the author, the various copyright issues have yet to be resolved. It is hoped that this document will provide the foundation for a resolution and that these important works will be available for public performance and study in the near future.
ContributorsRodríguez Morales, Luis F., 1980- (Author) / Campbell, Andrew (Thesis advisor) / Buck, Elizabeth (Committee member) / Holbrook, Amy (Committee member) / Kopta, Anne (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsYi, Joyce (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-22
150405-Thumbnail Image.png
Description
Infant mortality rate of field deployed photovoltaic (PV) modules may be expected to be higher than that estimated by standard qualification tests. The reason for increased failure rates may be attributed to the high system voltages. High voltages (HV) in grid connected modules induce additional stress factors that cause new

Infant mortality rate of field deployed photovoltaic (PV) modules may be expected to be higher than that estimated by standard qualification tests. The reason for increased failure rates may be attributed to the high system voltages. High voltages (HV) in grid connected modules induce additional stress factors that cause new degradation mechanisms. These new degradation mechanisms are not recognized by qualification stress tests. To study and model the effect of high system voltages, recently, potential induced degradation (PID) test method has been introduced. Using PID studies, it has been reported that high voltage failure rates are essentially due to increased leakage currents from active semiconducting layer to the grounded module frame, through encapsulant and/or glass. This project involved designing and commissioning of a new PID test bed at Photovoltaic Reliability Laboratory (PRL) of Arizona State University (ASU) to study the mechanisms of HV induced degradation. In this study, PID stress tests have been performed on accelerated stress modules, in addition to fresh modules of crystalline silicon technology. Accelerated stressing includes thermal cycling (TC200 cycles) and damp heat (1000 hours) tests as per IEC 61215. Failure rates in field deployed modules that are exposed to long term weather conditions are better simulated by conducting HV tests on prior accelerated stress tested modules. The PID testing was performed in 3 phases on a set of 5 mono crystalline silicon modules. In Phase-I of PID test, a positive bias of +600 V was applied, between shorted leads and frame of each module, on 3 modules with conducting carbon coating on glass superstrate. The 3 module set was comprised of: 1 fresh control, TC200 and DH1000. The PID test was conducted in an environmental chamber by stressing the modules at 85°C, for 35 hours with an intermittent evaluation for Arrhenius effects. In the Phase-II, a negative bias of -600 V was applied on a set of 3 modules in the chamber as defined above. The 3 module set in phase-II was comprised of: control module from phase-I, TC200 and DH1000. In the Phase-III, the same set of 3 modules which were used in the phase-II again subjected to +600 V bias to observe the recovery of lost power during the Phase-II. Electrical performance, infrared (IR) and electroluminescence (EL) were done prior and post PID testing. It was observed that high voltage positive bias in the first phase resulted in little
o power loss, high voltage negative bias in the second phase caused significant power loss and the high voltage positive bias in the third phase resulted in major recovery of lost power.
ContributorsGoranti, Sandhya (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2011
150421-Thumbnail Image.png
Description
Photovoltaic (PV) modules undergo performance degradation depending on climatic conditions, applications, and system configurations. The performance degradation prediction of PV modules is primarily based on Accelerated Life Testing (ALT) procedures. In order to further strengthen the ALT process, additional investigation of the power degradation of field aged PV modules in

Photovoltaic (PV) modules undergo performance degradation depending on climatic conditions, applications, and system configurations. The performance degradation prediction of PV modules is primarily based on Accelerated Life Testing (ALT) procedures. In order to further strengthen the ALT process, additional investigation of the power degradation of field aged PV modules in various configurations is required. A detailed investigation of 1,900 field aged (12-18 years) PV modules deployed in a power plant application was conducted for this study. Analysis was based on the current-voltage (I-V) measurement of all the 1,900 modules individually. I-V curve data of individual modules formed the basis for calculating the performance degradation of the modules. The percentage performance degradation and rates of degradation were compared to an earlier study done at the same plant. The current research was primarily focused on identifying the extent of potential induced degradation (PID) of individual modules with reference to the negative ground potential. To investigate this, the arrangement and connection of the individual modules/strings was examined in detail. The study also examined the extent of underperformance of every series string due to performance mismatch of individual modules in that string. The power loss due to individual module degradation and module mismatch at string level was then compared to the rated value.
ContributorsJaspreet Singh (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2011
ContributorsCummiskey, Hannah (Performer) / Kim, Olga (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-23
ContributorsGoglia, Adrienne (Performer)
Created2018-03-02
ContributorsEvans, Emily (Performer) / Sherrill, Amanda (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-02
ContributorsMartorana, Gabrielle (Performer) / Olarte, Aida (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-20