Matching Items (1,391)
Filtering by

Clear all filters

ContributorsASU Library. Music Library (Publisher)
Created2018-04-09
ContributorsJin, Leon (Performer) / Duo, Hongzuo (Performer) / Bergstedt, David (Performer) / Ellis, Gage (Performer) / Novak, Gail (Performer) / ASU Library. Music Library (Publisher)
Created2021-02-24
ContributorsASU Library. Music Library (Publisher)
Created2021-02-22
ContributorsWaters, Jared (Performer) / Creviston, Hannah (Performer) / Liu, Miao (Performer) / Guo, Hongzuo (Performer) / DeLaCruz, Nathaniel (Performer) / LoGuidice, Rosa (Performer) / Chiko, Ty (Performer) / Gatchel, David (Performer) / ASU Library. Music Library (Publisher)
Created2021-01-28
ContributorsKosminov, Vladislav (Performer) / Solari, John (Performer) / Liu, Shiyu (Performer) / Huang, Anruo (Performer) / Holly, Sean (Performer) / Novak, Gail (Performer) / Yang, Elliot (Performer) / Wu, Selene (Performer) / Kinnard, Zachariah (Performer) / Kuebelbeck, Stephen (Performer) / Johnson, Kaitlyn (Performer) / Bosworth, Robert (Performer) / Matejek, Ryan (Performer) / ASU Library. Music Library (Publisher)
Created2021-01-27
ContributorsASU Library. Music Library (Publisher)
Created2021-04-22
ContributorsSuehiro, Dylan (Conductor) / Kelley, Karen (Performer) / Ladley, Teddy (Performer) / ASU Library. Music Library (Publisher)
Created2021-04-19
ContributorsASU Library. Music Library (Publisher)
Created2021-04-12
152264-Thumbnail Image.png
Description
In order to cope with the decreasing availability of symphony jobs and collegiate faculty positions, many musicians are starting to pursue less traditional career paths. Also, to combat declining audiences, musicians are exploring ways to cultivate new and enthusiastic listeners through relevant and engaging performances. Due to these challenges, many

In order to cope with the decreasing availability of symphony jobs and collegiate faculty positions, many musicians are starting to pursue less traditional career paths. Also, to combat declining audiences, musicians are exploring ways to cultivate new and enthusiastic listeners through relevant and engaging performances. Due to these challenges, many community-based chamber music ensembles have been formed throughout the United States. These groups not only focus on performing classical music, but serve the needs of their communities as well. The problem, however, is that many musicians have not learned the business skills necessary to create these career opportunities. In this document I discuss the steps ensembles must take to develop sustainable careers. I first analyze how groups build a strong foundation through getting to know their communities and creating core values. I then discuss branding and marketing so ensembles can develop a public image and learn how to publicize themselves. This is followed by an investigation of how ensembles make and organize their money. I then examine the ways groups ensure long-lasting relationships with their communities and within the ensemble. I end by presenting three case studies of professional ensembles to show how groups create and maintain successful careers. Ensembles must develop entrepreneurship skills in addition to cultivating their artistry. These business concepts are crucial to the longevity of chamber groups. Through interviews of successful ensemble members and my own personal experiences in the Tetra String Quartet, I provide a guide for musicians to use when creating a community-based ensemble.
ContributorsDalbey, Jenna (Author) / Landschoot, Thomas (Thesis advisor) / McLin, Katherine (Committee member) / Ryan, Russell (Committee member) / Solis, Theodore (Committee member) / Spring, Robert (Committee member) / Arizona State University (Publisher)
Created2013
151310-Thumbnail Image.png
Description
Characterization of standard cells is one of the crucial steps in the IC design. Scaling of CMOS technology has lead to timing un-certainties such as that of cross coupling noise due to interconnect parasitic, skew variation due to voltage jitter and proximity effect of multiple inputs switching (MIS). Due to

Characterization of standard cells is one of the crucial steps in the IC design. Scaling of CMOS technology has lead to timing un-certainties such as that of cross coupling noise due to interconnect parasitic, skew variation due to voltage jitter and proximity effect of multiple inputs switching (MIS). Due to increased operating frequency and process variation, the probability of MIS occurrence and setup / hold failure within a clock cycle is high. The delay variation due to temporal proximity of MIS is significant for multiple input gates in the standard cell library. The shortest paths are affected by MIS due to the lack of averaging effect. Thus, sensitive designs such as that of SRAM row and column decoder circuits have high probability for MIS impact. The traditional static timing analysis (STA) assumes single input switching (SIS) scenario which is not adequate enough to capture gate delay accurately, as the delay variation due to temporal proximity of the MIS is ~15%-45%. Whereas, considering all possible scenarios of MIS for characterization is computationally intensive with huge data volume. Various modeling techniques are developed for the characterization of MIS effect. Some techniques require coefficient extraction through multiple spice simulation, and do not discuss speed up approach or apply models with complicated algorithms to account for MIS effect. The STA flow accounts for process variation through uncertainty parameter to improve product yield. Some of the MIS delay variability models account for MIS variation through table look up approach, resulting in huge data volume or do not consider propagation of RAT in the design flow. Thus, there is a need for a methodology to model MIS effect with less computational resource, and integration of such effect into design flow without trading off the accuracy. A finite-point based analytical model for MIS effect is proposed for multiple input logic gates and similar approach is extended for setup/hold characterization of sequential elements. Integration of MIS variation into design flow is explored. The proposed methodology is validated using benchmark circuits at 45nm technology node under process variation. Experimental results show significant reduction in runtime and data volume with ~10% error compared to that of SPICE simulation.
ContributorsSubramaniam, Anupama R (Author) / Cao, Yu (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Roveda, Janet (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012