Matching Items (3)
Filtering by

Clear all filters

137123-Thumbnail Image.png
Description
Insects of the order Embiidina spin sheets of very thin silk fibers from their forelimbs to build silken shelters on bark and in leaf litter in tropical climates. Their shelters are very stiff and hydrophobic to keep out predators and rain. In this study, the existence of an outer lipid

Insects of the order Embiidina spin sheets of very thin silk fibers from their forelimbs to build silken shelters on bark and in leaf litter in tropical climates. Their shelters are very stiff and hydrophobic to keep out predators and rain. In this study, the existence of an outer lipid coating on silk produced by the embiid Antipaluria urichi is shown using scanning and transmission electron microscopy, FT-IR, and water drop contact angle analysis. Subsequently, the composition of the lipid layer is then characterized by 1H NMR and GC-MS.
ContributorsOsborn Popp, Thomas Michael (Author) / Yarger, Jeffery (Thesis director) / Holland, Gregory (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
154235-Thumbnail Image.png
Description
In disordered soft matter system, amorphous and crystalline components might be coexisted. The interaction between the two distinct structures and the correlation within the crystalline components are crucial to the macroscopic property of the such material. The spider dragline silk biopolymer, is one of such soft matter material that exhibits

In disordered soft matter system, amorphous and crystalline components might be coexisted. The interaction between the two distinct structures and the correlation within the crystalline components are crucial to the macroscopic property of the such material. The spider dragline silk biopolymer, is one of such soft matter material that exhibits exceptional mechanical strength though its mass density is considerably small compare to structural metal. Through wide-angle X-ray scattering (WAXS), the research community learned that the silk fiber is mainly composed of amorphous backbone and $\beta$-sheet nano-crystals. However, the morphology of the crystalline system within the fiber is still not clear. Therefore, a combination of small-angle X-ray scattering experiments and stochastic simulation is designed here to reveal the nano-crystalline ordering in spider silk biopolymer. In addition, several density functional theory (DFT) calculations were performed to help understanding the interaction between amorphous backbone and the crystalline $\beta$-sheets.

By taking advantage of the prior information obtained from WAXS, a rather crude nano-crystalline model was initialized for further numerical reconstruction. Using Markov-Chain stochastic method, a hundreds of nanometer size $\beta$-sheet distribution model was reconstructed from experimental SAXS data, including silk fiber sampled from \textit{Latrodectus hesperus}, \textit{Nephila clavipes}, \textit{Argiope aurantia} and \textit{Araneus gemmoides}. The reconstruction method was implemented using MATLAB and C++ programming language and can be extended to study a broad range of disordered material systems.
ContributorsMou, Qiushi (Author) / Yarger, Jeffery (Thesis advisor) / Benmore, Chris (Committee member) / Holland, Gregory (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2015
158006-Thumbnail Image.png
Description
An evolving understanding of elastomeric polymer nanocomposites continues to expand commercial, defense, and industrial products and applications. This work explores the thermomechanical properties of elastomeric nanocomposites prepared from bisphenol A diglycidyl ether (BADGE) and three amine-terminated poly(propylene oxides) (Jeffamines). The Jeffamines investigated include difunctional crosslinkers with molecular weights of 2,000

An evolving understanding of elastomeric polymer nanocomposites continues to expand commercial, defense, and industrial products and applications. This work explores the thermomechanical properties of elastomeric nanocomposites prepared from bisphenol A diglycidyl ether (BADGE) and three amine-terminated poly(propylene oxides) (Jeffamines). The Jeffamines investigated include difunctional crosslinkers with molecular weights of 2,000 and 4,000 g/mol and a trifunctional crosslinker with a molecular weight of 3,000 g/mol. Additionally, carbon nanotubes (CNTs) were added, up to 1.25 wt%, to each thermoset. The findings indicate that the Tg and storage modulus of the polymer nanocomposites can be controlled independently within narrow concentration windows, and that effects observed following CNT incorporation are dependent on the crosslinker molecular weight.

Polymer matrix composites (PMCs) offer design solutions to produce smart sensing, conductive, or high performance composites for a number of critical applications. Nanoparticle additives, in particular, carbon nanotubes and metallic quantum dots, have been investigated for their ability to improve the conductivity, thermal stability, and mechanical strength of traditional composites. Herein we report the use of quantum dots (QDs) and fluorescently labeled carbon nanotubes (CNTs) to modify the thermomechanical properties of PMCs. Additionally, we find that pronounced changes in fluorescence emerge following plastic deformation, indicating that in these polymeric materials the transduction of mechanical force into the fluorescence occurs in response to mechanical activation.

Segmented ionenes are a class of thermoplastic elastomers that contain a permanent charged group within the polymer backbone and a spacer segment with a low glass transition temperature (Tg) to provide flexibility. Ionenes are of interest because of their synthetic versatility, unique morphologies, and ionic nature. Using phase changing ionene-based nanocomposites could be extended to create reversible mechanically, electrically, optically, and/or thermally responsive materials depending on constituent nanoparticles and polymers. This talk will discuss recent efforts to utilize the synthetic versatility of ionenes (e.g., spacer composition of PTMO or PEG) to prepare percolated ionic domains in microphase separated polymers that display a range of thermomechanical properties. Furthermore, by synthesizing two series of ionene copolymers with either PEG or PTMO spacers at various ratios with 1,12-dibromododecane will yield a range of ion contents (hard contents) and will impact nanoparticle dispersion.
ContributorsWang, Meng, Ph.D (Author) / Green, Matthew D (Thesis advisor) / Green, Alexander (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2019