Matching Items (3)
Filtering by

Clear all filters

137123-Thumbnail Image.png
Description
Insects of the order Embiidina spin sheets of very thin silk fibers from their forelimbs to build silken shelters on bark and in leaf litter in tropical climates. Their shelters are very stiff and hydrophobic to keep out predators and rain. In this study, the existence of an outer lipid

Insects of the order Embiidina spin sheets of very thin silk fibers from their forelimbs to build silken shelters on bark and in leaf litter in tropical climates. Their shelters are very stiff and hydrophobic to keep out predators and rain. In this study, the existence of an outer lipid coating on silk produced by the embiid Antipaluria urichi is shown using scanning and transmission electron microscopy, FT-IR, and water drop contact angle analysis. Subsequently, the composition of the lipid layer is then characterized by 1H NMR and GC-MS.
ContributorsOsborn Popp, Thomas Michael (Author) / Yarger, Jeffery (Thesis director) / Holland, Gregory (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
153946-Thumbnail Image.png
Description
Glycosaminoglycans (GAGs) are a class of complex biomolecules comprised of linear, sulfated polysaccharides whose presence on cell surfaces and in the extracellular matrix involve them in many physiological phenomena as well as in interactions with pathogenic microbes. Decorin binding protein A (DBPA), a Borrelia surface lipoprotein involved in the infectivity

Glycosaminoglycans (GAGs) are a class of complex biomolecules comprised of linear, sulfated polysaccharides whose presence on cell surfaces and in the extracellular matrix involve them in many physiological phenomena as well as in interactions with pathogenic microbes. Decorin binding protein A (DBPA), a Borrelia surface lipoprotein involved in the infectivity of Lyme disease, is responsible for binding GAGs found on decorin, a small proteoglycan present in the extracellular matrix. Different DBPA strains have notable sequence heterogeneity that results in varying levels of GAG-binding affinity. In this dissertation, the structures and GAG-binding mechanisms for three strains of DBPA (B31 and N40 DBPAs from B. burgdorferi and PBr DBPA from B. garinii) are studied to determine why each strain has a different affinity for GAGs. These three strains have similar topologies consisting of five α-helices held together by a hydrophobic core as well as two long flexible segments: a linker between helices one and two and a C-terminal tail. This structural arrangement facilitates the formation of a basic pocket below the flexible linker which is the primary GAG-binding epitope. However, this GAG-binding site can be occluded by the flexible linker, which makes the linker a negative regulator of GAG-binding. ITC and NMR titrations provide KD values that show PBr DBPA binds GAGs with higher affinity than B31 and N40 DBPAs, while N40 binds with the lowest affinity of the three. Work in this thesis demonstrates that much of the discrepancies seen in GAG affinities of the three DBPAs can be explained by the amino acid composition and conformation of the linker. Mutagenesis studies show that B31 DBPA overcomes the pocket obstruction with the BXBB motif in its linker while PBr DBPA has a retracted linker that exposes the basic pocket as well as a secondary GAG-binding site. N40 DBPA, however, does not have any evolutionary modifications to its structure to enhance GAG binding which explains its lower affinity for GAGs. GMSA and ELISA assays, along with NMR PRE experiments, confirm that structural changes in the linker do affect GAG-binding and, as a result, the linker is responsible for regulating GAG affinity.
ContributorsMorgan, Ashli M (Author) / Wang, Xu (Thesis advisor) / Allen, James (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2015
158006-Thumbnail Image.png
Description
An evolving understanding of elastomeric polymer nanocomposites continues to expand commercial, defense, and industrial products and applications. This work explores the thermomechanical properties of elastomeric nanocomposites prepared from bisphenol A diglycidyl ether (BADGE) and three amine-terminated poly(propylene oxides) (Jeffamines). The Jeffamines investigated include difunctional crosslinkers with molecular weights of 2,000

An evolving understanding of elastomeric polymer nanocomposites continues to expand commercial, defense, and industrial products and applications. This work explores the thermomechanical properties of elastomeric nanocomposites prepared from bisphenol A diglycidyl ether (BADGE) and three amine-terminated poly(propylene oxides) (Jeffamines). The Jeffamines investigated include difunctional crosslinkers with molecular weights of 2,000 and 4,000 g/mol and a trifunctional crosslinker with a molecular weight of 3,000 g/mol. Additionally, carbon nanotubes (CNTs) were added, up to 1.25 wt%, to each thermoset. The findings indicate that the Tg and storage modulus of the polymer nanocomposites can be controlled independently within narrow concentration windows, and that effects observed following CNT incorporation are dependent on the crosslinker molecular weight.

Polymer matrix composites (PMCs) offer design solutions to produce smart sensing, conductive, or high performance composites for a number of critical applications. Nanoparticle additives, in particular, carbon nanotubes and metallic quantum dots, have been investigated for their ability to improve the conductivity, thermal stability, and mechanical strength of traditional composites. Herein we report the use of quantum dots (QDs) and fluorescently labeled carbon nanotubes (CNTs) to modify the thermomechanical properties of PMCs. Additionally, we find that pronounced changes in fluorescence emerge following plastic deformation, indicating that in these polymeric materials the transduction of mechanical force into the fluorescence occurs in response to mechanical activation.

Segmented ionenes are a class of thermoplastic elastomers that contain a permanent charged group within the polymer backbone and a spacer segment with a low glass transition temperature (Tg) to provide flexibility. Ionenes are of interest because of their synthetic versatility, unique morphologies, and ionic nature. Using phase changing ionene-based nanocomposites could be extended to create reversible mechanically, electrically, optically, and/or thermally responsive materials depending on constituent nanoparticles and polymers. This talk will discuss recent efforts to utilize the synthetic versatility of ionenes (e.g., spacer composition of PTMO or PEG) to prepare percolated ionic domains in microphase separated polymers that display a range of thermomechanical properties. Furthermore, by synthesizing two series of ionene copolymers with either PEG or PTMO spacers at various ratios with 1,12-dibromododecane will yield a range of ion contents (hard contents) and will impact nanoparticle dispersion.
ContributorsWang, Meng, Ph.D (Author) / Green, Matthew D (Thesis advisor) / Green, Alexander (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2019