Matching Items (3)
150253-Thumbnail Image.png
Description
Second-generation biofuel feedstocks are currently grown in land-based systems that use valuable resources like water, electricity and fertilizer. This study investigates the potential of near-shore marine (ocean) seawater filtration as a source of planktonic biomass for biofuel production. Mixed marine organisms in the size range of 20µm to 500µm were

Second-generation biofuel feedstocks are currently grown in land-based systems that use valuable resources like water, electricity and fertilizer. This study investigates the potential of near-shore marine (ocean) seawater filtration as a source of planktonic biomass for biofuel production. Mixed marine organisms in the size range of 20µm to 500µm were isolated from the University of California, Santa Barbara (UCSB) seawater filtration system during weekly backwash events between the months of April and August, 2011. The quantity of organic material produced was determined by sample combustion and calculation of ash-free dry weights. Qualitative investigation required density gradient separation with the heavy liquid sodium metatungstate followed by direct transesterification and gas chromatography with mass spectrometry (GC-MS) of the fatty acid methyl esters (FAME) produced. A maximum of 0.083g/L of dried organic material was produced in a single backwash event and a study average of 0.036g/L was calculated. This equates to an average weekly value of 7,674.75g of dried organic material produced from the filtration of approximately 24,417,792 liters of seawater. Temporal variations were limited. Organic quantities decreased over the course of the study. Bio-fouling effects from mussel overgrowth inexplicably increased production values when compared to un-fouled seawater supply lines. FAMEs (biodiesel) averaged 0.004% of the dried organic material with 0.36ml of biodiesel produced per week, on average. C16:0 and C22:6n3 fatty acids comprised the majority of the fatty acids in the samples. Saturated fatty acids made up 30.71% to 44.09% and unsaturated forms comprised 55.90% to 66.32% of the total chemical composition. Both quantities and qualities of organics and FAMEs were unrealistic for use as biodiesel but sample size limitations, system design, geographic and temporal factors may have impacted study results.
ContributorsPierre, Christophe (Author) / Olson, Larry (Thesis advisor) / Sommerfeld, Milton (Committee member) / Brown, Albert (Committee member) / Arizona State University (Publisher)
Created2011
137117-Thumbnail Image.png
Description
This thesis aims to evaluate how in classroom demonstrations compare to regular education techniques, and how student learning styles affect interest in science and engineering as future fields of study. Science education varies between classrooms, but usually is geared towards lecture and preparation for standardized exams without concern for student

This thesis aims to evaluate how in classroom demonstrations compare to regular education techniques, and how student learning styles affect interest in science and engineering as future fields of study. Science education varies between classrooms, but usually is geared towards lecture and preparation for standardized exams without concern for student interest or enjoyment.5 To discover the effectiveness of demonstrations in these concerns, an in classroom demonstration with a water filtration experiment was accompanied by several modules and followed by a short survey. Hypotheses tested included that students would enjoy the demonstration more than a typical class session, and that of these students, those with more visual or tactile learning styles would identify with science or engineering as a possible major in college. The survey results affirmed the first hypothesis, but disproved the second hypothesis; thus illustrating that demonstrations are enjoyable, and beneficial for sparking or maintaining student interest in science across all types of students.
ContributorsPiper, Jessica Marie (Author) / Lind, Mary Laura (Thesis director) / Montoya-Gonzales, Roxanna (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
166068-Thumbnail Image.png
Description
The lack of infrastructure to provide clean drinking water and sanitation has led to the immense influx and use of plastic sachets, plastic water bottles, and the overall continued rise of plastic usage. Plastic pollution is rising at unprecedented rates. Current estimations show that there will be more plastic in

The lack of infrastructure to provide clean drinking water and sanitation has led to the immense influx and use of plastic sachets, plastic water bottles, and the overall continued rise of plastic usage. Plastic pollution is rising at unprecedented rates. Current estimations show that there will be more plastic in the ocean than fish before 2050. BYOH2O was developed in efforts to ensure clean water access for individuals while minimizing waste creation and more specifically, reducing plastic. BYOH2O (Bring Your Own H2O) is a revolutionary device that provides clean water for outdoor recreational trips such as backpacking, hiking, hunting, and cycling. The BYOH2O company was created in August 2021. BYOH2O is a device that significantly reduces the amount of plastic that is typically found in portable water devices by allowing the easy filtration of water without the need for electricity.
ContributorsWaxman, Aviel (Author) / Butler, Jacob (Co-author) / Langlais, Grayson (Co-author) / Vullo, Delaney (Co-author) / Byrne, Jared (Thesis director) / Larsen, Wiley (Committee member) / Lawson, Brennan (Committee member) / Barrett, The Honors College (Contributor) / School of Social Work (Contributor)
Created2022-05