Matching Items (2)
137106-Thumbnail Image.png
Description
The goal of this project was to use the sense of touch to investigate tactile cues during multidigit rotational manipulations of objects. A robotic arm and hand equipped with three multimodal tactile sensors were used to gather data about skin deformation during rotation of a haptic knob. Three different rotation

The goal of this project was to use the sense of touch to investigate tactile cues during multidigit rotational manipulations of objects. A robotic arm and hand equipped with three multimodal tactile sensors were used to gather data about skin deformation during rotation of a haptic knob. Three different rotation speeds and two levels of rotation resistance were used to investigate tactile cues during knob rotation. In the future, this multidigit task can be generalized to similar rotational tasks, such as opening a bottle or turning a doorknob.
ContributorsChalla, Santhi Priya (Author) / Santos, Veronica (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor)
Created2014-05
137769-Thumbnail Image.png
Description
Electrochemical sensors function by detecting electroactive species at the electrode surface of a screen printed sensor. As more force is applied, the concentration of electroactive species at the surface of the sensor increases and a larger current is measured. Thus, when all conditions including voltage are made constant, as in

Electrochemical sensors function by detecting electroactive species at the electrode surface of a screen printed sensor. As more force is applied, the concentration of electroactive species at the surface of the sensor increases and a larger current is measured. Thus, when all conditions including voltage are made constant, as in Amp i-t, a quantifiable current can be read and the force applied can be calculated. Two common electrochemical techniques in which current is measured, cyclic voltammetry(CV) and amperometric i-t(Amp i-t), were used. A compressible sensor capable of transducing a force and acquiring feedback was created.
ContributorsFeldman, Austin Marc (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05