Matching Items (5)
Description
Phosphoinositol-Dependent Kinase 1 (PDK1) acts in conjunction with phosphorylated lipids such as Phosphoinositol-3,4,5-triphosphate (PIP3) to activate a variety of proteins that regulate mechanisms ranging from cell growth and survival to cytoskeletal rearrangement. In this investigation PDK1 was examined in the context of cellular division. The techniques of immunocytochemistry and live

Phosphoinositol-Dependent Kinase 1 (PDK1) acts in conjunction with phosphorylated lipids such as Phosphoinositol-3,4,5-triphosphate (PIP3) to activate a variety of proteins that regulate mechanisms ranging from cell growth and survival to cytoskeletal rearrangement. In this investigation PDK1 was examined in the context of cellular division. The techniques of immunocytochemistry and live cell imaging were used to visualize the effects of the inhibition of PDK1 on division in HeLa cells. Division was impaired at metaphase of mitosis. The inhibited cells were unable to initiate anaphase cell-elongation ultimately leading to the flattening of spherical, metaphase cells. Preliminary studies with imunocytochemistry and live cell imaging suggested that insulin treatment reversed PDK1 inhibition, but the results were not statistically significant. Therefore, the recovery of PDK1 inhibition by insulin treatment could not be confirmed. Based on these observations a possible reason for the inability of the treated cells to complete cytokinesis could be the role of PDK1 in the Rho-kinase pathway that is required for the processes cell-elongation necessary for anaphase of mitosis.
ContributorsMasserano, Benjamin Max (Author) / Capco, David (Thesis director) / Baluch, Debra (Committee member) / Chandler, Douglas (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2014-05
173179-Thumbnail Image.png
Description

Curt Jacob Stern studied radiation and chromosomes in humans and fruit flies in the United States during the twentieth century. He researched the mechanisms of inheritance and of mitosis, or the process in which the chromosomes in the nucleus of a single cell, called the parent cell, split into identical

Curt Jacob Stern studied radiation and chromosomes in humans and fruit flies in the United States during the twentieth century. He researched the mechanisms of inheritance and of mitosis, or the process in which the chromosomes in the nucleus of a single cell, called the parent cell, split into identical sets and yield two cells, called daughter cells. Stern worked on the Drosophila melanogaster fruit fly, and he provided early evidence that chromosomes exchange genetic material during cellular reproduction. During World War II, he provided evidence for the harmful effects of radiation on developing organisms. That research showed that mutations can cause problems in developing fetuses and can lead to cancer. He helped explain how genetic material transmits from parent to progeny, and how it functions in developing organisms.

Created2017-06-23
172821-Thumbnail Image.png
Description

The Cell in Development and Inheritance, by Edmund Beecher Wilson, provided a textbook introduction to cell biology for generations of biologists in the twentieth century. In his book, Wilson integrated information about development, inheritance, chromosomes, organelles, and the structure and functions of cells. First published in 1896, the book started

The Cell in Development and Inheritance, by Edmund Beecher Wilson, provided a textbook introduction to cell biology for generations of biologists in the twentieth century. In his book, Wilson integrated information about development, inheritance, chromosomes, organelles, and the structure and functions of cells. First published in 1896, the book started with 371 pages, grew to 483 pages in the second edition that appeared in 1900, and expanded to 1,231 pages by the third and final edition in 1925. Wilson dedicated the book to the cell biologist Theodor Boveri, whose work established the roles of chromosomes in cell division. With its explanations and many illustrations and diagrams, The Cell in Development and Inheritance enabled embryologists to better understand development in terms of cell structure and function.

Created2015-06-18
172862-Thumbnail Image.png
Description

Lynn Petra Alexander Sagan Margulis was an American biologist, whose work in the mid-twentieth century focused on cells living together in a mutually advantageous relationship, studied cells and mitochondria in the US during the second half of the twentieth century. She developed a theory for the origin of eukaryotic cells,

Lynn Petra Alexander Sagan Margulis was an American biologist, whose work in the mid-twentieth century focused on cells living together in a mutually advantageous relationship, studied cells and mitochondria in the US during the second half of the twentieth century. She developed a theory for the origin of eukaryotic cells, that proposed two kinds of structures found in eukaryotic cells mitochondria in animals, and plastids in plantsÑwere once free-living bacteria that lived harmoniously and in close proximity to larger cells, a scenario called symbiosis. Margulis proposed that the larger cells eventually engulfed the free-living bacteria, resulting in cells living inside other cells, a situation called endosymbiosis. Margulis'theory became called the serial endosymbiosis theory (SET). Her work contributed to explanations of the evolution and development of life, as eukaryotic cells comprise most multicellular organisms, including their embryos.

Created2014-03-23
172764-Thumbnail Image.png
Description

On the Origin of Mitosing Cells by Lynn Sagan appeared in the March 1967 edition of the Journal of Theoretical Biology. At the time the article was published, Lynn Sagan had divorced astronomer Carl Sagan, but kept his last name. Later, she remarried and changed her name to Lynn Margulis,

On the Origin of Mitosing Cells by Lynn Sagan appeared in the March 1967 edition of the Journal of Theoretical Biology. At the time the article was published, Lynn Sagan had divorced astronomer Carl Sagan, but kept his last name. Later, she remarried and changed her name to Lynn Margulis, and will be referred to as such throughout this article. In her 1967 article, Margulis develops a theory for the origin of complex cells that have enclosed nuclei, called eukaryotic cells. She proposes that three organelles: mitochondria, plastids, and basal bodies, which are all parts of eukaryotic cells, were once free-living cells that took residence inside primitive eukaryotic cells. This process Margulis called endosymbiosis. Margulis' theory explained the origin of eukaryote cells, which are the fundamental cell type of most multicellular organisms and form the basis of embryogenesis. After fertilization, embryos develop from a single eukaryotic cell that divides by mitosis.

Created2014-04-15