Matching Items (2,111)
Filtering by

Clear all filters

136943-Thumbnail Image.png
Description
Cerebral aneurysms, also known as intracranial aneurysms, are sac-like lesions in the arteries of the brain that can rupture to cause subarachnoid hemorrhaging, damaging and killing brain cells. Metal coil embolization has been traditionally used to occlude and treat cerebral aneurysms to limited success, but polymer embolization has been suggested,

Cerebral aneurysms, also known as intracranial aneurysms, are sac-like lesions in the arteries of the brain that can rupture to cause subarachnoid hemorrhaging, damaging and killing brain cells. Metal coil embolization has been traditionally used to occlude and treat cerebral aneurysms to limited success, but polymer embolization has been suggested, because it can provide a greater fraction of occlusion. One such polymer with low cytotoxicity is poly(propylene glycol)diacrylate (PPODA) crosslinked via Michael-type addition with pentaerythritol tetrakis(3-mercaptopropionate) (QT). This study was performed to examine the behavior of PPODA-QT gel in vitro under pulsatile flow emulating physiological conditions. An idealized cerebral aneurysm flow model was designed based on geometries associated with an increase in rupture risk. Pressure was monitored at the apex of the aneurysm dome for varied flow rates and polymer filling fractions of 32.4, 78.2, and 100%. The results indicate that the amount of PPODA-QT deployed into the aneurysm decreases the peak-to-peak oscillation in pressure at the aneurysm wall by an inverse proportion. The 32.4 and 78.2% treatments did not significantly decrease the mean pressure applied to the aneurysm dome, but the 100% treatment greatly reduced it by diverting flow. This study indicates that the maximum filling fraction after swelling of PPODA-QT polymer should be deployed into the aneurysmal sac for treatment.
ContributorsWorkman, Christopher David (Author) / Vernon, Brent (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
173937-Thumbnail Image.png
Description

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty times before they cannot divide any further. Researchers later found that the cause of the Hayflick Limit is the shortening of telomeres, or portions of DNA at the ends of chromosomes that slowly degrade as cells replicate. Hayflick used his research on normal embryonic cells to develop a vaccine for polio, and from HayflickÕs published directions, scientists developed vaccines for rubella, rabies, adenovirus, measles, chickenpox and shingles.

Created2014-07-20
173939-Thumbnail Image.png
Description

Although best known for his work with the fruit fly, for which he earned a Nobel Prize and the title "The Father of Genetics," Thomas Hunt Morgan's contributions to biology reach far beyond genetics. His research explored questions in embryology, regeneration, evolution, and heredity, using a variety of approaches.

Created2007-09-25
173947-Thumbnail Image.jpg
Created1935