Matching Items (4)
Filtering by

Clear all filters

147868-Thumbnail Image.png
Description

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities of using a double-stage reusable rocket, where the second stage is also a reusable, rocket-powered passenger vehicle using a low earth orbit space journey with a stabilized re-entry method that ensures passenger comfortability. A potential network of spaceports spanning the globe is postulated within a range of 4,000 km to 8,000 km(2,160 nm to 4,320 nm) of each other, and each located within an hour by any other means of ground transport to population hubs greater than four million. This will help further connect the world as the journey from one major city to another would take at most an hour, and no point on the habited continents would be more than 4,000 km(2,160 nm) from a spaceport. It is assumed that the costs of an international first class flight ticket are in the thousands of dollars range showing how there is a potential market for this type of travel network. The reasoning and analysis, through a literature review, for an intercontinental rocket vehicle is presented along with the various aspects of the possibility of this kind of travel network coming to fruition in the near future.

ContributorsRanganathan, Anirudh (Co-author) / Karthikeyan, Sayish (Co-author) / Takahashi, Timothy (Thesis director) / Niemczyk, Mary (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities

Long distance travel around the globe can potentially be revolutionized with the use of an intercontinental rocket that uses low earth orbit as its medium. This transport system can increase growth in many new businesses like tourism travel between the continents. This research evaluates the technical and non-technical possibilities of using a double-stage reusable rocket, where the second stage is also a reusable, rocket-powered passenger vehicle using a low earth orbit space journey with a stabilized re-entry method that ensures passenger comfortability. A potential network of spaceports spanning the globe is postulated within a range of 4,000 km to 8,000 km(2,160 nm to 4,320 nm) of each other, and each located within an hour by any other means of ground transport to population hubs greater than four million. This will help further connect the world as the journey from one major city to another would take at most an hour, and no point on the habited continents would be more than 4,000 km(2,160 nm) from a spaceport. It is assumed that the costs of an international first class flight ticket are in the thousands of dollars range showing how there is a potential market for this type of travel network. The reasoning and analysis, through a literature review, for an intercontinental rocket vehicle is presented along with the various aspects of the possibility of this kind of travel network coming to fruition in the near future.

ContributorsKarthikeyan, Sayish Priya (Co-author) / Ranganathan, Anirudh (Co-author) / Takahashi, Timothy (Thesis director) / Niemczyk, Mary (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137398-Thumbnail Image.png
Description
My project analyzes the air traffic control tower (ATCT) system of the Federal Aviation Administration (FAA) to determine if a rebalancing of ATCT ownership and operation should occur. The government currently faces a problem of a tight financial budget and sequestration, which often times means mandatory budget cuts. This project

My project analyzes the air traffic control tower (ATCT) system of the Federal Aviation Administration (FAA) to determine if a rebalancing of ATCT ownership and operation should occur. The government currently faces a problem of a tight financial budget and sequestration, which often times means mandatory budget cuts. This project provides one possible solution for the FAA to save money in their budget without adversely affecting safety. The FAA could establish appropriate criteria to compare all ATCTs. The FAA could then apply these criteria in a policy that would contract the operation of certain low-level ATCTs and conversely handle the operations at high-activity ATCTs. Additionally, the FAA could include a policy to transfer the ownership of certain low-activity towers, but transfer the ownership of high-activity towers to the FAA. The research was completed by studying various documents from the FAA, Department of Transportation (DOT), and industry groups. Most of the data analysis was conducted by creating tables, queries, and graphs from FAA data. The FAA data was found on their Air Traffic Activity Data System (ATADS). From my data analysis, I was able to identify sixty-nine ATCTs that are currently operated by the FAA that could become federal contract towers (FCT) and forty-six FCTs that could be operated by the FAA. Each FCT saves the FAA approximately $1.488 million, so the FAA could save $34.2 million per year by implementing my solutions. I have also established sample criteria for determining which ATCTs could be maintained by the FAA.
ContributorsJuri, William Joseph (Author) / Denny, Casey (Thesis director) / Niemczyk, Mary (Committee member) / Barrett, The Honors College (Contributor) / Department of Technological Entrepreneurship and Innovation Management (Contributor)
Created2013-12
136350-Thumbnail Image.png
Description
In the U.S., less than 20 percent of wildlife strikes are reported, which leaves a large portion of incidents unaccounted for. Although wildlife strikes at airports often go unreported, since the early 1990's the number of wildlife strikes has increased five-fold and the number of damaging strikes has increased 1.5-fold.

In the U.S., less than 20 percent of wildlife strikes are reported, which leaves a large portion of incidents unaccounted for. Although wildlife strikes at airports often go unreported, since the early 1990's the number of wildlife strikes has increased five-fold and the number of damaging strikes has increased 1.5-fold. Goals for this project include determining if biological and landscape variables are good predictors of wildlife strikes. We define response variables as the number of reported wildlife strikes per 10,000 airport operations. We studied seven major airports around Phoenix, Arizona and 30 large airports in the western U.S. In the Phoenix metro valley, airports varied from having 0.3 strikes per year per 10,000 operations to having 14.5 strikes from 2009 to 2013. We determined bird richness by using the citizen-science database "eBird,"and measured species richness within a 15 kilometer area of each airport. Species richness between hotspots ranged from 131 to 320. Seasonal differences were determined using an analysis of variance (ANOVA) analysis for the seven Phoenix metro airports as well as the 30 western U.S. airports. Our results showed that there was a seasonal difference in wildlife strikes in the majority of our airports. We also used land use data from CAP LTER to determine any environmental factors such as vicinity to water or fence line located within five kilometers from airports using ArcGIS. These results are important because they are helpful in determining the factors influencing wildlife strikes based on the number of strikes reported.
ContributorsSalaki, Logan (Co-author) / Montgomery, Brett (Co-author) / Bateman, Heather (Thesis director) / Niemczyk, Mary (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05