Matching Items (3)
153365-Thumbnail Image.png
Description
Warning coloration deters predators from attacking prey that are defended, usually by being distasteful, toxic, or otherwise costly for predators to pursue and consume. Predators may have an innate response to warning colors or learn to associate them with a defense through trial and error. In general, predators should select

Warning coloration deters predators from attacking prey that are defended, usually by being distasteful, toxic, or otherwise costly for predators to pursue and consume. Predators may have an innate response to warning colors or learn to associate them with a defense through trial and error. In general, predators should select for warning signals that are easy to learn and recognize. Previous research demonstrates long-wavelength colors (e.g. red and yellow) are effective because they are readily detected and learned. However, a number of defended animals display short-wavelength coloration (e.g. blue and violet), such as the pipevine swallowtail butterfly (Battus philenor). The role of blue coloration in warning signals had not previously been explicitly tested. My research showed in laboratory experiments that curve-billed thrashers (Toxostoma curvirostre) and Gambel's quail (Callipepla gambelii) can learn and recognize the iridescent blue of B. philenor as a warning signal and that it is innately avoided. I tested the attack rates of these colors in the field and blue was not as effective as orange. I concluded that blue colors may function as warning signals, but the effectiveness is likely dependent on the context and predator.

Blue colors are often iridescent in nature and the effect of iridescence on warning signal function was unknown. I reared B. philenor larvae under varied food deprivation treatments. Iridescent colors did not have more variation than pigment-based colors under these conditions; variation which could affect predator learning. Learning could also be affected by changes in appearance, as iridescent colors change in both hue and brightness as the angle of illuminating light and viewer change in relation to the color surface. Iridescent colors can also be much brighter than pigment-based colors and iridescent animals can statically display different hues. I tested these potential effects on warning signal learning by domestic chickens (Gallus gallus domesticus) and found that variation due to the directionality of iridescence and a brighter warning signal did not influence learning. However, blue-violet was learned more readily than blue-green. These experiments revealed that the directionality of iridescent coloration does not likely negatively affect its potential effectiveness as a warning signal.
ContributorsPegram, Kimberly Vann (Author) / Rutowski, Ronald L (Thesis advisor) / Hoelldobler, Berthold (Committee member) / Liebig, Juergen (Committee member) / McGraw, Kevin (Committee member) / Smith, Brian H. (Committee member) / Arizona State University (Publisher)
Created2015
136267-Thumbnail Image.png
Description
Rock Doves (Columba livia), also known as pigeons, are a common sight to city dwellers around the world. Often overlooked as urban pests, these birds have intriguing iridescent coloration on their necks that has been the subject of few studies. Previous studies have documented the multimodal reflectance spectra of the

Rock Doves (Columba livia), also known as pigeons, are a common sight to city dwellers around the world. Often overlooked as urban pests, these birds have intriguing iridescent coloration on their necks that has been the subject of few studies. Previous studies have documented the multimodal reflectance spectra of the iridescence and the keratin cortex microstructures responsible for those properties, but do not address questions about the biological context of this coloration. In this study, I explore the factors that affect how this directional signal might appear to intended receivers (assumed to be females). Pigeon neck feathers were obtained from captive-raised birds and measured for reflectance values at numerous angles in the hemisphere above the feather to obtain a directional reflectance distribution. Each feather was mounted individually, and measurements were taken at a consistent location on the feather using a spectrophotometer; the collector was positioned directly above the feather, while we moved the light source in both azimuth and elevation on a Carden arm to simulate changes in pigeon movements during courtship. Depending on the elevation and azimuth of the light source, pigeon neck feathers shift in appearance from green to purple, with an accompanying shift in the location and intensity of reflectance peaks. Additionally, this unique coloration is due to multiple reflectance peaks in the avian vision field between 300 and 700nm. These data coupled with qualitative behavioral observations of Rock Dove courtship inform our understanding of how the color signal is displayed and how it appears to a potential mate; as a female observes the movements in a male courtship display, properties of the iridescence utilize multiple viewing angles to create a dynamic color array.
ContributorsFankhauser, Kaci Lynn (Author) / Rutowski, Ronald (Thesis director) / McGraw, Kevin (Committee member) / McBeath, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2015-05
152389-Thumbnail Image.png
Description
The origin and function of color in animals has been a subject of great interest for taxonomists and ecologists in recent years. Coloration in animals is useful for many important functions like species identification, camouflage and understanding evolutionary relationships. Quantitative measurements of color signal and patch size in mammals, birds

The origin and function of color in animals has been a subject of great interest for taxonomists and ecologists in recent years. Coloration in animals is useful for many important functions like species identification, camouflage and understanding evolutionary relationships. Quantitative measurements of color signal and patch size in mammals, birds and reptiles, to name a few are strong indicators of sexual selection cues and individual health. These measurements provide valuable insights into the impact of environmental conditions on habitat and breeding of mammals, birds and reptiles. Recent advances in the area of digital cameras and sensors have led to a significant increase in the use of digital photography as a means of color quantification in animals. Although a significant amount of research has been conducted on ways to standardize image acquisition conditions and calibrate cameras for use in animal color quantification, almost no work has been done on designing automated methods for animal color quantification. This thesis presents a novel perceptual"–"based framework for the automated extraction and quantification of animal coloration from digital images with slowly varying (almost homogenous) background colors. This implemented framework uses a combination of several techniques including color space quantization using a few dominant colors, foreground"–"background identification, Bayesian classification and mixture Gaussian modelling of conditional densities, edge"–"enhanced model"–"based classification and Saturation"–"Brightness quantization to extract the colored patch. This approach assumes no prior information about the color of either the subject or the background and also the position of the subject in the image. The performance of the proposed method is evaluated for the plumage color of the wild house finches. Segmentation results obtained using the implemented framework are compared with manually scored results to illustrate the performance of this system. The segmentation results show a high correlation with manually scored images. This novel framework also eliminates common problems in manual scoring of digital images such as low repeatability and inter"–"observer error.
ContributorsBorkar, Tejas (Author) / Karam, Lina J (Thesis advisor) / Li, Baoxin (Committee member) / McGraw, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2013