Matching Items (2)
Filtering by

Clear all filters

149330-Thumbnail Image.png
Description
Enzymes which regulate the metabolic reactions for sustaining all living things, are the engines of life. The discovery of molecules that are able to control enzyme activity is of great interest for therapeutics and the biocatalysis industry. Peptides are promising enzyme modulators due to their large chemical diversity and the

Enzymes which regulate the metabolic reactions for sustaining all living things, are the engines of life. The discovery of molecules that are able to control enzyme activity is of great interest for therapeutics and the biocatalysis industry. Peptides are promising enzyme modulators due to their large chemical diversity and the existence of well-established methods for library synthesis. Microarrays represent a powerful tool for screening thousands of molecules, on a small chip, for candidates that interact with enzymes and modulate their functions. In this work, a method is presented for screening high-density arrays to discover peptides that bind and modulate enzyme activity. A viscous polyvinyl alcohol (PVA) solution was applied to array surfaces to limit the diffusion of product molecules released from enzymatic reactions, allowing the simultaneous measurement of enzyme activity and binding at each peptide feature. For proof of concept, it was possible to identify peptides that bound to horseradish peroxidase (HRP), alkaline phosphatase (APase) and â-galactosidase (â-Gal) and substantially alter their activities by comparing the peptide-enzyme binding levels and bound enzyme activity on microarrays. Several peptides, selected from microarrays, were able to inhibit â-Gal in solution, which demonstrates that behaviors selected from surfaces often transfer to solution. A mechanistic study of inhibition revealed that some of the selected peptides inhibited enzyme activity by binding to enzymes and inducing aggregation. PVA-coated peptide slides can be rapidly analyzed, given an appropriate enzyme assay, and they may also be assayed under various conditions (such as temperature, pH and solvent). I have developed a general method to discover molecules that modulate enzyme activity at desired conditions. As demonstrations, some peptides were able to promote the thermal stability of bound enzyme, which were selected by performing the microarray-based enzyme assay at high temperature. For broad applications, selected peptide ligands were used to immobilize enzymes on solid surfaces. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activities and stabilities. Peptide-modified surfaces may prove useful for immobilizing enzymes on surfaces with optimized orientation, location and performance, which are of great interest to the biocatalysis industry.
ContributorsFu, Jinglin (Author) / Woodbury, Neal W (Thesis advisor) / Johnston, Stephen A. (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2010
190846-Thumbnail Image.png
Description
Enzymes keep life nicely humming along by catalyzing important reactions at relevant timescales. Despite their immediate importance, how enzymes recognize and bind their substrate in a sea of cytosolic small molecules, carry out the reaction, and release their product in microseconds is still relatively opaque. Methods to elucidate enzyme substrate

Enzymes keep life nicely humming along by catalyzing important reactions at relevant timescales. Despite their immediate importance, how enzymes recognize and bind their substrate in a sea of cytosolic small molecules, carry out the reaction, and release their product in microseconds is still relatively opaque. Methods to elucidate enzyme substrate specificity indicate that the shape of the active site and the amino acid residues therein play a major role. However, lessons from Directed Evolution experiments reveal the importance of residues far from the active site in modulating substrate specificity. Enzymes are dynamic macromolecules composed of networks of interactions integrating the active site, where the chemistry occurs, to the rest of the protein. The objective of this work is to develop computational methods to modify enzyme ligand specificity, either through molding the active site to accommodate a novel ligand, or by identifying distal mutations that can allosterically alter specificity. To this end, two homologues in the β-lactamase family of enzymes, TEM-1, and an ancestrally reconstructed variant, GNCA, were studied to identify whether the modulation of position-specific distal-residue flexibility could modify ligand specificity. RosettaDesign was used to create TEM-1 variants with altered dynamic patterns. Experimental characterization of ten designed proteins indicated that mutations to residues surrounding rigid, highly coupled residues substantially affected both enzymatic activity and stability. In contrast, native-like activities and stabilities were maintained when flexible, uncoupled residues, were targeted. Five of the TEM-1 variants were crystallized to see if the changes in function observed were due to architectural changes to the active site. In a second project, a computational platform using RosettaDesign was developed to remodel the firefly luciferase active site to accommodate novel luciferins. This platform resulted in the development of five luciferin-luciferase pairs with red-shifted emission maxima, ready for multicomponent bioluminescent imaging applications in tissues. Although the projects from this work focus on two classes of proteins, they provide insight into the structure-function relationship of ligand specificity in enzymes and are broadly applicable to other systems.
ContributorsKolbaba Kartchner, Bethany (Author) / Mills, Jeremy H (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Van Horn, Wade D (Committee member) / Arizona State University (Publisher)
Created2023