Matching Items (1,401)
Filtering by

Clear all filters

151693-Thumbnail Image.png
Description
The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules

The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules with the particular property. DNA and RNA sequences with versatile functions have been identified by in vitro selection experiments, but many basic questions remain to be answered about how these molecules achieve their functions. This dissertation first focuses on addressing a fundamental question regarding the molecular recognition properties of in vitro selected DNA sequences, namely whether negatively charged DNA sequences can be evolved to bind alkaline proteins with high specificity. We showed that DNA binders could be made, through carefully designed stringent in vitro selection, to discriminate different alkaline proteins. The focus of this dissertation is then shifted to in vitro evolution of an artificial genetic polymer called threose nucleic acid (TNA). TNA has been considered a potential RNA progenitor during early evolution of life on Earth. However, further experimental evidence to support TNA as a primordial genetic material is lacking. In this dissertation we demonstrated the capacity of TNA to form stable tertiary structure with specific ligand binding property, which suggests a possible role of TNA as a pre-RNA genetic polymer. Additionally, we discussed the challenges in in vitro evolution for TNA enzymes and developed the necessary methodology for future TNA enzyme evolution.
ContributorsYu, Hanyang (Author) / Chaput, John C (Thesis advisor) / Chen, Julian (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
152264-Thumbnail Image.png
Description
In order to cope with the decreasing availability of symphony jobs and collegiate faculty positions, many musicians are starting to pursue less traditional career paths. Also, to combat declining audiences, musicians are exploring ways to cultivate new and enthusiastic listeners through relevant and engaging performances. Due to these challenges, many

In order to cope with the decreasing availability of symphony jobs and collegiate faculty positions, many musicians are starting to pursue less traditional career paths. Also, to combat declining audiences, musicians are exploring ways to cultivate new and enthusiastic listeners through relevant and engaging performances. Due to these challenges, many community-based chamber music ensembles have been formed throughout the United States. These groups not only focus on performing classical music, but serve the needs of their communities as well. The problem, however, is that many musicians have not learned the business skills necessary to create these career opportunities. In this document I discuss the steps ensembles must take to develop sustainable careers. I first analyze how groups build a strong foundation through getting to know their communities and creating core values. I then discuss branding and marketing so ensembles can develop a public image and learn how to publicize themselves. This is followed by an investigation of how ensembles make and organize their money. I then examine the ways groups ensure long-lasting relationships with their communities and within the ensemble. I end by presenting three case studies of professional ensembles to show how groups create and maintain successful careers. Ensembles must develop entrepreneurship skills in addition to cultivating their artistry. These business concepts are crucial to the longevity of chamber groups. Through interviews of successful ensemble members and my own personal experiences in the Tetra String Quartet, I provide a guide for musicians to use when creating a community-based ensemble.
ContributorsDalbey, Jenna (Author) / Landschoot, Thomas (Thesis advisor) / McLin, Katherine (Committee member) / Ryan, Russell (Committee member) / Solis, Theodore (Committee member) / Spring, Robert (Committee member) / Arizona State University (Publisher)
Created2013
152727-Thumbnail Image.png
Description
American Primitive is a composition written for wind ensemble with an instrumentation of flute, oboe, clarinet, bass clarinet, alto, tenor, and baritone saxophones, trumpet, horn, trombone, euphonium, tuba, piano, and percussion. The piece is approximately twelve minutes in duration and was written September - December 2013. American Primitive is absolute

American Primitive is a composition written for wind ensemble with an instrumentation of flute, oboe, clarinet, bass clarinet, alto, tenor, and baritone saxophones, trumpet, horn, trombone, euphonium, tuba, piano, and percussion. The piece is approximately twelve minutes in duration and was written September - December 2013. American Primitive is absolute music (i.e. it does not follow a specific narrative) comprising blocks of distinct, contrasting gestures which bookend a central region of delicate textural layering and minimal gestural contrast. Though three gestures (a descending interval followed by a smaller ascending interval, a dynamic swell, and a chordal "chop") were consciously employed throughout, it is the first gesture of the three that creates a sense of unification and overall coherence to the work. Additionally, the work challenges listeners' expectations of traditional wind ensemble music by featuring the trumpet as a quasi-soloist whose material is predominately inspired by transcriptions of jazz solos. This jazz-inspired material is at times mimicked and further developed by the ensemble, also often in a soloistic manner while the trumpet maintains its role throughout. This interplay of dialogue between the "soloists" and the "ensemble" further skews listeners' conceptions of traditional wind ensemble music by featuring almost every instrument in the ensemble. Though the term "American Primitive" is usually associated with the "naïve art" movement, it bears no association to the music presented in this work. Instead, the term refers to the author's own compositional attitudes, education, and aesthetic interests.
ContributorsJandreau, Joshua (Composer) / Rockmaker, Jody D (Thesis advisor) / Rogers, Rodney I (Committee member) / Demars, James R (Committee member) / Arizona State University (Publisher)
Created2014
153332-Thumbnail Image.png
Description
In enzyme induced carbonate precipitation (EICP), calcium carbonate (CaCO3) precipitation is catalyzed by plant-derived urease enzyme. In EICP, urea hydrolyzes into ammonia and inorganic carbon, altering geochemical conditions in a manner that promotes carbonate mineral precipitation. The calcium source in this process comes from calcium chloride (CaCl2) in

In enzyme induced carbonate precipitation (EICP), calcium carbonate (CaCO3) precipitation is catalyzed by plant-derived urease enzyme. In EICP, urea hydrolyzes into ammonia and inorganic carbon, altering geochemical conditions in a manner that promotes carbonate mineral precipitation. The calcium source in this process comes from calcium chloride (CaCl2) in aqueous solution. Research work conducted for this dissertation has demonstrated that EICP can be employed for a variety of geotechnical purposes, including mass soil stabilization, columnar soil stabilization, and stabilization of erodible surficial soils. The research presented herein also shows that the optimal ratio of urea to CaCl2 at ionic strengths of less than 1 molar is approximately 1.75:1. EICP solutions of very high initial ionic strength (i.e. 6 M) as well as high urea concentrations (> 2 M) resulted in enzyme precipitation (salting-out) which hindered carbonate precipitation. In addition, the production of NH4+ may also result in enzyme precipitation. However, enzyme precipitation appeared to be reversible to some extent. Mass soil stabilization was demonstrated via percolation and mix-and-compact methods using coarse silica sand (Ottawa 20-30) and medium-fine silica sand (F-60) to produce cemented soil specimens whose strength improvement correlated with CaCO3 content, independent of the method employed to prepare the specimen. Columnar stabilization, i.e. creating columns of soil cemented by carbonate precipitation, using Ottawa 20-30, F-60, and native AZ soil was demonstrated at several scales beginning with small columns (102-mm diameter) and culminating in a 1-m3 soil-filled box. Wind tunnel tests demonstrated that surficial soil stabilization equivalent to that provided by thoroughly wetting the soil can be achieved through a topically-applied solution of CaCl2, urea, and the urease enzyme. The topically applied solution was shown to form an erosion-resistant CaCO3 crust on fine sand and silty soils. Cementation of erodible surficial soils was also achieved via EICP by including a biodegradable hydrogel in the stabilization solution. A dilute hydrogel solution extended the time frame over which the precipitation reaction could occur and provided improved spatial control of the EICP solution.
ContributorsHamdan, Nasser M (Author) / Kavazanjian Jr., Edward (Thesis advisor) / Rittmann, Bruce (Thesis advisor) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2015
153120-Thumbnail Image.png
Description
This project is a practical annotated bibliography of original works for oboe trio with the specific instrumentation of two oboes and English horn. Presenting descriptions of 116 readily available oboe trios, this project is intended to promote awareness, accessibility, and performance of compositions within this genre.

The annotated bibliography focuses

This project is a practical annotated bibliography of original works for oboe trio with the specific instrumentation of two oboes and English horn. Presenting descriptions of 116 readily available oboe trios, this project is intended to promote awareness, accessibility, and performance of compositions within this genre.

The annotated bibliography focuses exclusively on original, published works for two oboes and English horn. Unpublished works, arrangements, works that are out of print and not available through interlibrary loan, or works that feature slightly altered instrumentation are not included.

Entries in this annotated bibliography are listed alphabetically by the last name of the composer. Each entry includes the dates of the composer and a brief biography, followed by the title of the work, composition date, commission, and dedication of the piece. Also included are the names of publishers, the length of the entire piece in minutes and seconds, and an incipit of the first one to eight measures for each movement of the work.

In addition to providing a comprehensive and detailed bibliography of oboe trios, this document traces the history of the oboe trio and includes biographical sketches of each composer cited, allowing readers to place the genre of oboe trios and each individual composition into its historical context. Four appendices at the end include a list of trios arranged alphabetically by composer's last name, chronologically by the date of composition, and by country of origin and a list of publications of Ludwig van Beethoven's oboe trios from the 1940s and earlier.
ContributorsSassaman, Melissa Ann (Author) / Schuring, Martin (Thesis advisor) / Buck, Elizabeth (Committee member) / Holbrook, Amy (Committee member) / Hill, Gary (Committee member) / Arizona State University (Publisher)
Created2014
151241-Thumbnail Image.png
Description
Cancer is a disease that affects millions of people worldwide each year. The metastatic progression of cancer is the number one reason for cancer related deaths. Cancer preventions rely on the early identification of tumor cells as well as a detailed understanding of cancer as a whole. Identifying proteins specific

Cancer is a disease that affects millions of people worldwide each year. The metastatic progression of cancer is the number one reason for cancer related deaths. Cancer preventions rely on the early identification of tumor cells as well as a detailed understanding of cancer as a whole. Identifying proteins specific to tumor cells provide an opportunity to develop noninvasive clinical tests and further our understanding of tumor biology. Using liquid chromatography-mass spectrometry (LC-MS/MS) a short peptide was identified in pancreatic cancer patient plasma that was not found in normal samples, and mapped back to QSOX1 protein. Immunohistochemistry was performed probing for QSOX1 in tumor tissue and discovered that QSOX1 is highly over-expressed in pancreatic and breast tumors. QSOX1 is a FAD-dependent sulfhydryl oxidase that is extremely efficient at forming disulfide bonds in nascent proteins. While the enzymology of QSOX1 has been well studied, the tumor biology of QSOX1 has not been studied. To begin to determine the advantage that QSOX1 over-expression provides to tumors, short hairpin RNA (shRNA) were used to reduce the expression of QSOX1 in human tumor cell lines. Following the loss of QSOX1 growth rate, apoptosis, cell cycle and invasive potential were compared between tumor cells transduced with shQSOX1 and control tumor cells. Knock-down of QSOX1 protein suppressed tumor cell growth but had no effect on apoptosis and cell cycle regulation. However, shQSOX1 dramatically inhibited the abilities of both pancreatic and breast tumor cells to invade through Matrigel in a modified Boyden chamber assay. Mechanistically, shQSOX1-transduced tumor cells secreted MMP-2 and -9 that were less active than MMP-2 and -9 from control cells. Taken together, these results suggest that the mechanism of QSOX1-mediated tumor cell invasion is through the post-translational activation of MMPs. This dissertation represents the first in depth study of the role that QSOX1 plays in tumor cell biology.
ContributorsKatchman, Benjamin A (Author) / Lake, Douglas F. (Thesis advisor) / Rawls, Jeffery A (Committee member) / Miller, Laurence J (Committee member) / Chang, Yung (Committee member) / Arizona State University (Publisher)
Created2012
ContributorsPagano, Caio, 1940- (Performer) / Mechetti, Fabio (Conductor) / Buck, Elizabeth (Performer) / Schuring, Martin (Performer) / Spring, Robert (Performer) / Rodrigues, Christiano (Performer) / Landschoot, Thomas (Performer) / Rotaru, Catalin (Performer) / Avanti Festival Orchestra (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-02
157235-Thumbnail Image.png
Description
Quiescin sulfhydryl oxidase 1 (QSOX1) is an enzyme that catalyzes disulfide bond formation by oxidizing two free sulfhydryl groups. QSOX1 consists of a thioredoxin (Trx) and an ERV (essential for respiration and viability)/ALR (augmenter of liver regeneration) domain which each contain CxxC motifs that work to bind to substrates and

Quiescin sulfhydryl oxidase 1 (QSOX1) is an enzyme that catalyzes disulfide bond formation by oxidizing two free sulfhydryl groups. QSOX1 consists of a thioredoxin (Trx) and an ERV (essential for respiration and viability)/ALR (augmenter of liver regeneration) domain which each contain CxxC motifs that work to bind to substrates and shuttle electrons to a flavin adenine dinucleotide (FAD) cofactor that accepts the electrons and reduces molecular oxygen to hydrogen peroxide. Investigation of the role of QSOX1 in cancer progression started when it was found at higher abundance in pancreatic ductal adenocarcinoma (PDA) patient plasma compared to healthy normal donor plasma. Increased expression in QSOX1 has been further identified in breast, lung, kidney, prostate, and other cancers. QSOX1 expression is associated with cell proliferation and invasion in vitro and tumor growth in vivo. Additionally, the enzymatic activity of QSOX1 in the extracellular matrix (ECM) is important for cell invasion in vitro. Small molecule inhibitors of QSOX1 have been shown to have antitumorigenic properties in vitro and in vivo. It was hypothesized that monoclonal antibodies (mAbs) against QSOX1 would inhibit cell invasion in vitro. In this work, mice were immunized with eukaryotic-derived rQSOX1 for generation of hybridomas. Hundreds of hybridoma clones were screened by enzyme-linked immunosorbent assay (ELISA) and a fluorescent QSOX1 activity assay. Multiple rounds of subcloning and screening identified 2F1.14 and 3A10.6 as mAbs of interest. The genes for the variable regions of the antibodies were rescued and sequenced. The sequences were aligned with the variable region sequences of another published αQSOX1 mAb scFv492.1. 2F1.14 inhibits the enzymatic activity of QSOX1 by binding to the active site of QSOX1, which was determined by epitope mapping against mutants of QSOX1 that contained mutations in the active site. 3A10.6 did not appear to inhibit the function of QSOX1 in the activity assay; however, it, along with 2F1.14, suppressed tumor invasion in a 3D invasion model. These findings support the developing idea that QSOX1 is a viable target for cancer treatment because targeted inhibition of QSOX1 extracellularly reduced invasive activity. The mAbs and rQSOX1 variants produced here can serve as tools in furthering the characterization of QSOX1 and its role in cancer.
ContributorsKoelbel, Calvin John (Author) / Lake, Douglas (Thesis advisor) / Chen, Qiang "Shawn" (Committee member) / Ho, Thai (Committee member) / Arizona State University (Publisher)
Created2019
156935-Thumbnail Image.png
Description
The public has expressed a growing desire for more sustainable and green technologies to be implemented in society. Bio-cementation is a method of soil improvement that satisfies this demand for sustainable and green technology. Bio-cementation can be performed by using microbes or free enzymes which precipitate carbonate within

The public has expressed a growing desire for more sustainable and green technologies to be implemented in society. Bio-cementation is a method of soil improvement that satisfies this demand for sustainable and green technology. Bio-cementation can be performed by using microbes or free enzymes which precipitate carbonate within the treated soil. These methods are referred to as microbial induced carbonate precipitation (MICP) and enzyme induced carbonate precipitation (EICP). The precipitation of carbonate is the formation of crystalline minerals that fill the void spaces within a body of soil.

This thesis investigates the application of EICP in a soil collected from the Arizona State University Polytechnic campus. The surficial soil in the region is known to be a clayey sand. Both EICP and MICP have their limitations in soils consisting of a significant percentage of fines. Fine-grained soils have a greater surface area which requires the precipitation of a greater amount of carbonate to increase the soil’s strength. EICP was chosen due to not requiring any living organisms during the application, having a faster reaction rate and size constraints.

To determine the effectiveness of EICP as a method of improving a soil with a significant amount of fines, multiple comparisons were made: 1) The soil’s strength was analyzed on its own, untreated; 2) The soil was treated with EICP to determine if bio-cementation can strengthen the soil; 3) The soil had sand added to reduce the fines content and was treated with EICP to determine how the fines percentage effects the strength of a soil when treated with EICP.

While the EICP treatment increased the strength of the soil by over 3-fold, the strength was still relatively low when compared to results of other case studies treating sandy soils. More research could be done with triaxial testing due to the samples of the Polytechnic soil’s strength coming from capillarity.
ContributorsRoss, Johnathan (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Hamdan, Nasser (Committee member) / Arizona State University (Publisher)
Created2018