Matching Items (7)
154573-Thumbnail Image.png
Description
LiNbO3 and ZnO have shown great potential for photochemical surface reactions and specific photocatalytic processes. However, the efficiency of LiNbO3 is limited due to recombination or back reactions and ZnO exhibits a chemical instability in a liquid cell. In this dissertation, both materials were coated with precise thickness of metal

LiNbO3 and ZnO have shown great potential for photochemical surface reactions and specific photocatalytic processes. However, the efficiency of LiNbO3 is limited due to recombination or back reactions and ZnO exhibits a chemical instability in a liquid cell. In this dissertation, both materials were coated with precise thickness of metal oxide layers to passivate the surfaces and to enhance their photocatalytic efficiency. LiNbO3 was coated with plasma enhanced atomic layer deposited (PEALD) ZnO and Al2O3, and molecular beam deposited TiO2 and VO2. On the other hand, PEALD ZnO and single crystal ZnO were passivated with PEALD SiO2 and Al2O3.

Metal oxide/LiNbO3 heterostructures were immersed in aqueous AgNO3 solutions and illuminated with ultraviolet (UV) light to form Ag nanoparticle patterns. Alternatively, Al2O3 and SiO2/ZnO heterostructures were immersed in K3PO4 buffer solutions and studied for photoelectrochemical reactions. A fundamental aspect of the heterostructures is the band alignment and band bending, which was deduced from in situ photoemission measurements.

This research has provided insight to three aspects of the heterostructures. First, the band alignment at the interface of metal oxides/LiNbO3, and Al2O3 or SiO2/ZnO were used to explain the possible charge transfer processes and the direction of carrier flow in the heterostructures. Second, the effect of metal oxide coatings on the LiNbO3 with different internal carrier concentrations was related to the surface photochemical reactions. Third is the surface passivation and degradation mechanism of Al2O3 and SiO2 on ZnO was established. The heterostructures were characterized after stability tests using atomic force microscopy (AFM), scanning electron microscopy (SEM), and cross-section transmission electron microscopy (TEM).

The results indicate that limited thicknesses of ZnO or TiO2 on polarity patterned LiNbO3 (PPLN) enhances the Ag+ photoinduced reduction process. ZnO seems more efficient than TiO2 possibly due to a higher carrier mobility. However, an increase of the ZnO thickness (≥ 4 nm) reduced the effect of the PPLN substrate on the Ag nanoparticle pattern. For the case of Al2O3 and SiO2/ZnO heterostructures, SiO2 remains intact through 1 h stability tests. Unlike SiO2, Al2O3 shows surface degradation after a short stability test of a few minutes. Thus, SiO2 provides improved passivation over Al2O3. A detailed microscopy analysis indicates the underneath ZnO photocorrodes in the SiO2/ZnO samples, which is possibly due to transport of ions through the SiO2 protective layer.
ContributorsKaur, Manpuneet (Author) / Nemanich, Robert (Thesis advisor) / Dey, Sandwip (Committee member) / Crozier, Peter (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2016
Description
Integration of dielectrics with graphene is essential to the fulfillment of graphene based electronic applications. While many dielectric deposition techniques exist, plasma enhanced atomic layer deposition (PEALD) is emerging as a technique to deposit ultrathin dielectric films with superior densities and interfaces. However, the degree to which PEALD on graphene

Integration of dielectrics with graphene is essential to the fulfillment of graphene based electronic applications. While many dielectric deposition techniques exist, plasma enhanced atomic layer deposition (PEALD) is emerging as a technique to deposit ultrathin dielectric films with superior densities and interfaces. However, the degree to which PEALD on graphene can be achieved without plasma-induced graphene deterioration is not well understood. In this work, we investigate a range of plasma conditions across a single sample, characterizing both oxide growth and graphene deterioration using spectroscopic analysis and atomic force microscopy. Investigation of graphene and film quality produced by these conditions yields insight into plasma effects. Using a specially designed sample configuration, we achieve ultrathin (< 1 nm) aluminum oxide films atop graphene.
ContributorsTrimble, Christie Jordan (Author) / Nemanich, Robert (Thesis director) / Zaniewski, Anna (Committee member) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
168318-Thumbnail Image.png
Description
In this dissertation, the surface interactions of fluorine were studied during atomic layer deposition (ALD) and atomic layer etching (ALE) of wide band gap materials. To enable this research two high vacuum reactors were designed and constructed for thermal and plasma enhanced ALD and ALE, and they were equipped for

In this dissertation, the surface interactions of fluorine were studied during atomic layer deposition (ALD) and atomic layer etching (ALE) of wide band gap materials. To enable this research two high vacuum reactors were designed and constructed for thermal and plasma enhanced ALD and ALE, and they were equipped for in-situ process monitoring. Fluorine surface interactions were first studied in a comparison of thermal and plasma enhanced ALD (TALD and PEALD) of AlF3 thin films prepared using hydrogen fluoride (HF), trimethylaluminum (TMA), and H2-plasma. The ALD AlF3 films were compared ¬in-situ using ellipsometry and X-ray photoelectron spectroscopy (XPS). Ellipsometry showed a growth rate of 1.1 Å/ cycle and 0.7 Å/ cycle, at 100°C, for the TALD and PEALD AlF3 processes, respectively. XPS indicated the presence of Al-rich clusters within the PEALD film. The formation of the Al-rich clusters is thought to originate during the H2-plasma step of the PEALD process. The Al-rich clusters were not detected in the TALD AlF3 films. This study provided valuable insight on the role of fluorine in an ALD process. Reactive ion etching is a common dry chemical etch process for fabricating GaN devices. However, the use of ions can induce various defects, which can degrade device performance. The development of low-damage post etch processes are essential for mitigating plasma induced damage. As such, two multistep ALE methods were implemented for GaN based on oxidation, fluorination, and ligand exchange. First, GaN surfaces were oxidized using either water vapor or O2-plasma exposures to produce a thin oxide layer. The oxide layer was addressed using alternating exposures of HF and TMG, which etch Ga2O3 films. Each ALE process was characterized using in-situ using ellipsometry and XPS and ex-situ transmission electron microscopy (TEM). XPS indicated F and O impurities remained on the etched surfaces. Ellipsometry and TEM showed a slight reduction in thickness. The very low ALE rate was interpreted as the inability of the Ga2O3 ALE process to fluorinate the ordered surface oxide on GaN (0001). Overall, these results indicate HF is effective for the ALD of metal fluorides and the ALE of metal oxides.
ContributorsMessina, Daniel C (Author) / Nemanich, Robert J (Thesis advisor) / Goodnick, Stephen (Committee member) / Ponce, Fernando A (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2021
Description

The objective of this experiment was to use water contact angle (WCA) to measure the effectiveness of adhesion, Atomic Layer Deposition (ALD), and cleaning techniques within different operations at Intel Corporation. Using the Sessile Drop Method, goniometer instrument, and a Video Contact Angle system (VCA), the water contact angle across

The objective of this experiment was to use water contact angle (WCA) to measure the effectiveness of adhesion, Atomic Layer Deposition (ALD), and cleaning techniques within different operations at Intel Corporation. Using the Sessile Drop Method, goniometer instrument, and a Video Contact Angle system (VCA), the water contact angle across silicon wafers at various operations were determined. Based on the results, it was concluded that Operation 5 and Step 4.4 within Operation 5 were suspected to cause lack of uniformity across the wafers, which is detrimental to the durability of the wafer and the overall high performance of a microchip. Due to proprietary reasons, it could not be disclosed as to whether adhesion, ALD, or cleaning techniques were implemented and suspected to cause non-uniformity across the wafer, but despite any operation, the topography of the wafer should be leveled. The absolute slopes of Operation 5 and Step 4.4 were 2.445 and 3.189, respectively. These slopes represented the change in contact angles across different positions of the wafer. In comparison, these showed the greatest variation of contact angles across the wafers, meaning the surface topography was more concentrated in certain areas of the wafer than others. Given these characteristics, Operation 5 and Step 4.4 are not qualified to produce high performing microchips because their techniques and methods are prone to cause surface defects, wafer stress, and wafer breakage.

ContributorsMunoz, Camryn (Author) / Chan, Candace (Thesis director) / Frazier, Amy (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
168446-Thumbnail Image.png
Description
In this dissertation, atomic layer processing and surface characterization techniques were used to investigate surface conditions of wide band gap materials, gallium nitride (GaN) and gallium oxide (Ga2O3). These studies largely focused on mitigation and removal of defect formation induced by ions used in conventional plasma-based dry etching techniques. Band

In this dissertation, atomic layer processing and surface characterization techniques were used to investigate surface conditions of wide band gap materials, gallium nitride (GaN) and gallium oxide (Ga2O3). These studies largely focused on mitigation and removal of defect formation induced by ions used in conventional plasma-based dry etching techniques. Band bending measured by x-ray photoelectron spectroscopy (XPS) was used to characterize charge compensation at the surface of GaN (0001) and determine densities of charged surface states produced by dry etching. Mitigation and removal of these dry-etch induced defects was investigated by varying inductively coupled plasma (ICP) etching conditions, performing thermal and plasma-based treatments, and development of a novel low-damage, self-limiting atomic layer etching (ALE) process to remove damaged material. Atomic layer deposition (ALD) and ALE techniques were developed for Ga2O3 using trimethylgallium (TMG). Ga2O3 was deposited by ALD on Si using TMG and O2 plasma with a growth rate of 1.0 ± 0.1 Å/cycle. Ga2O3 films were then etched using HF and TMG using a fully thermal ALE process with an etch rate of 0.9 ± Å/cycle. O2 plasma oxidation of GaN for surface conversion to Ga2O3 was investigated as a pathway for ALE of GaN using HF and TMG. This process was characterized using XPS, in situ multi-wavelength ellipsometry, and transmission electron microscopy. This study indicated that the etch rate was lower than anticipated, which was attributed to crystallinity of the converted surface oxide on GaN (0001).
ContributorsHatch, Kevin Andrew (Author) / Nemanich, Robert J (Thesis advisor) / Ponce, Fernando A (Committee member) / Smith, David J (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2021
161590-Thumbnail Image.png
Description
In this dissertation, far UV spectroscopy is applied to investigate the optical properties of dielectric thin films grown by atomic layer deposition. The far UV (120 – 200 nm) reflectance for several dielectric oxides and fluorides, including AlF3, Al2O3, Ga2O3, HfO2, and SiO2, was measured at variable angles and thicknesses.

In this dissertation, far UV spectroscopy is applied to investigate the optical properties of dielectric thin films grown by atomic layer deposition. The far UV (120 – 200 nm) reflectance for several dielectric oxides and fluorides, including AlF3, Al2O3, Ga2O3, HfO2, and SiO2, was measured at variable angles and thicknesses. Multiple optical calculation methods were developed for the accurate determination of the optical constants from the reflectance. The deduced optical constants were used for optical designs, such as high-reflectivity coatings, and Fabry-Perot bandpass interference filters. Three filters were designed for use at 157 nm, 212 nm, and 248 nm wavelengths, based on multilayer structures consisting of SiO2, Al2O3, HfO2, and AlF3. A thorough error analysis was made to quantify the non-idealities of the optical performance for the designed filters. Far UV spectroscopy was also applied to analyze material mixtures, such as AlF3/Al and h-BN/c-BN mixtures. Using far UV spectroscopy, different phases in the composite can be distinguished, and the volume concentration of each constituent can be determined. A middle UV reflective coating based on A2O3 and AlF3 was fabricated and characterized. The reflective coating has a smooth surface (?? < 1 nm), and a peak reflectance of 25 – 30 % at a wavelength of 196 nm. The peak reflectance deviated from the design, and an analysis of the AlF3 layer prepared by plasma-enhanced atomic layer deposition (PEALD) indicated the presence of Al-rich clusters, which were associated with the UV absorption. Complementary techniques, such as spectroscopic ellipsometry, and X-ray photoelectron spectroscopy, were used to verify the results from far UV spectroscopy. In conclusion, this Dissertation demonstrated the use of in-situ far UV spectroscopy to investigate the optical properties of thin films at short wavelengths. This work extends the application of far UV spectroscopy to ultrawide bandgap semiconductors and insulators. This work supports a path forward for far UV optical filters and devices. Various errors have been discussed with solutions proposed for future research of methods and materials for UV optics.
ContributorsHuang, Zhiyu (Author) / Nemanich, Robert (Thesis advisor) / Ponce, Fernando (Committee member) / Menéndez, Jose (Committee member) / Holman, Zachary (Committee member) / Arizona State University (Publisher)
Created2021
161871-Thumbnail Image.png
Description
Functional materials can be characterized as materials that have tunable properties and are attractive solutions to the improvement and optimization of processes that require specific physiochemical characteristics. Through tailoring and altering these materials, their characteristics can be fine-tuned for specific applications. Computational modeling proves to be a crucial methodology in

Functional materials can be characterized as materials that have tunable properties and are attractive solutions to the improvement and optimization of processes that require specific physiochemical characteristics. Through tailoring and altering these materials, their characteristics can be fine-tuned for specific applications. Computational modeling proves to be a crucial methodology in the design and optimization of such materials. This dissertation encompasses the utilization of molecular dynamics simulations and quantum calculations in two fields of functional materials: electrolytes and semiconductors. Molecular dynamics (MD) simulations were performed on ionic liquid-based electrolyte systems to identify molecular interactions, structural changes, and transport properties that are often reflected in experimental results. The simulations aid in the development process of the electrolyte systems in terms of concentrations of the constituents and can be invoked as a complementary or predictive tool to laboratory experiments. The theme of this study stretches further to include computational studies of the reactivity of atomic layer deposition (ALD) precursors. Selected aminosilane-based precursors were chosen to undergo density functional theory (DFT) calculations to determine surface reactivity and viability in an industrial setting. The calculations were expanded to include the testing of a semi-empirical tight binding program to predict growth per cycle and precursor reactivity with a high surface coverage model. Overall, the implementation of computational methodologies and techniques within these applications improves materials design and process efficiency while streamlining the development of new functional materials.
ContributorsGliege, Marisa Elise (Author) / Dai, Lenore (Thesis advisor) / Derecskei-Kovacs, Agnes (Thesis advisor) / Muhich, Christopher (Committee member) / Emady, Heather (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2021